

CivilCAD3000

MANUAL DEL USUARIO

MÓDULO DE MUROS

Versión 2.1

El presente documento es propiedad intelectual de *CivilCAD Consultores, S.L.* Queda totalmente prohibida su reproducción total o parcial, su tratamiento informático o la transmisión del mismo por cualquier medio electrónico, mecánico u otros métodos sin el permiso previo y por escrito de *CivilCAD Consultores, S.L.*

Barcelona, diciembre de 2014

ÍNDICE

1 ALCANCE DEL MÓDULO. TIPOLOGÍA DE MUROS

2 ESTRUCTURA DEL MÓDULO

- 2.1 Órdenes de proyecto
 - 2.1.1 Orden Nuevo
 - 2.1.2 Orden Abrir
 - 2.1.3 Orden Guardar
 - 2.1.4 Orden Guardar como
 - 2.1.5 Orden Cerrar
 - 2.1.6 Orden Configurar
 - 2.1.7 Orden Información general
 - 2.1.7.1 Normativa española
 - 2.1.7.2 Normativa europea
 - 2.1.7.3 Normativa americana
- 2.2 Orden Entrada
- 2.3 Orden Análisis
- 2.4 Orden Salida

3 ENTRADA DE DATOS

3.1 Orden Geometría

- 3.1.1 Orden Generación automática del muro
- 3.1.2 Orden Planta del paramento
- 3.1.3 Orden Zapata
- 3.1.4 Orden Alzado
- 3.2 Orden Terreno
- 3.3 Orden Materiales
- 3.4 Orden Clases de exposición
 - 3.4.1 Normativa española
 - 3.4.2 Normativa europea
 - 3.4.3 Normativa americana
- 3.5 Orden Fisuración
 - 3.5.1 Normativa española
 - 3.5.2 Normativa europea
 - 3.5.3 Normativa americana
- 3.6 Orden Acciones
 - 3.6.1 Orden Acciones permanentes
 - 3.6.2 Orden Acciones variables
 - 3.6.3 Orden Acciones accidentales
- 3.7 Orden Coeficientes de mayoración de acciones
 - 3.7.1 Normativa española
 - 3.7.2 Normativa europea
 - 3.7.3 Normativa americana

- 3.8 Orden Coeficientes de seguridad y combinación.
 - 3.8.1 Normativa española
 - 3.8.2 Normativa europea
- 3.9 Orden Factores de Resistencia (normativa americana).
- 3.10 Orden Armadura
 - 3.10.1 Orden Recubrimientos
 - 3.10.2 Orden Despiece del alzado
 - 3.10.3 Orden Despiece de la zapata
 - 3.10.4 Orden Despiece del tacón
- 3.11 Orden Configuración

4 ANÁLISIS

- 4.1 Orden Esfuerzos
 - 4.1.1 Gráfica de esfuerzos
 - 4.1.2 Listado
- 4.2 Orden Deslizamiento
 - 4.2.1 Consulta
 - 4.2.2 Listado
- 4.3 Orden Vuelco
 - 4.3.1 Consulta
 - 4.3.2 Listado
- 4.4 Orden *Estabilidad global*
 - 4.4.1 Orden Configuración
 - 4.4.2 Orden Consulta
 - 4.4.3 Orden Listado
- 4.5 Orden Hundimiento del terreno
- 4.6 Orden Rotura por flexión
- 4.7 Orden Fisuración
- 4.8 Orden Rotura por cortante
- 4.9 Orden Deformaciones
- 4.10 Orden Generación de armado
- 4.11 Orden Mediciones

5 SALIDA

- 5.1 Orden Memoria de cálculo
- 5.2 Orden Planos
 - 5.2.1 Orden Planos de definición geométrica
 - 5.2.2 Orden Planos de armadura
- 5.3 Orden Mediciones
 - 5.3.1 Orden Listado de mediciones
 - 5.3.2 Orden Listado de mediciones y precios

6 REFERENCIAS

1 ALCANCE DEL MÓDULO. TIPOLOGÍA DE MUROS

El Módulo Muros de *CivilCAD3000* permite proyectar un muro ejecutado *in situ*, constituido por una serie de n módulos adyacentes, cuyo alzado puede ser de canto variable o escalonado. La longitud de cada módulo es definida por el usuario.

Los paramentos de los distintos módulos que conforman el muro deben formar un ángulo en planta comprendido entre 170^{g} y 230^{g} .

En el caso de muro de canto variable, tanto el paramento exterior (paramento visto) como el paramento interior (trasdós) se pueden definir con inclinación. La altura del muro puede ser variable a lo largo de un módulo.

Figura 1-1: Muro de canto variable.

En el caso de muros escalonados el alzado está formado por dos tramos de canto constante.

Figura 1-2: Muro escalonado.

La zapata se puede definir con base horizontal o inclinada. En el caso de base horizontal, *CivilCAD3000* permite disponer un tacón para mejorar la resistencia al deslizamiento.

Figura 1-3: Zapata con tacón.

Figura 1-4: Zapata con base inclinada.

El terreno del trasdós puede situarse a cualquier cota por debajo de la coronación del muro, pudiendo ser horizontal, inclinado o presentar un tramo en talud y el resto horizontal.

Figura 1-5: Definición del terreno del trasdós.

El terreno situado delante del muro se considera horizontal.

Las cargas que actúan sobre el muro son el peso propio del muro, el peso y el empuje de las tierras, la acción del agua, las sobrecargas uniformes y variables en el trasdós, las acciones previstas en coronación del muro (permanentes, variables y accidentales) y la acción sísmica.

	ACCIONES CONSIDER	ADAS EN EL CÁLCULO DEL MU	JRO
Naturaleza		Acción	
Permanente	Peso propio muro		
	Acción de las tierras		Empuje
			Peso
	Sobrecarga uniforme en tras	dós	Empuje
			Acción vertical
	Acciones en coronación de 1		
	Carga en faja en trasdós de 1	Empuje	
			Acción vertical
Variable	Tráfico	Sobrecarga en trasdós	Empuje
			Acción vertical
		Carga en coronación de muro	
	Viento	Acción en coronación de muro	
	Agua (nivel freático)		
Accidental	Sismo		
	Impacto de vehículos	Acción en coronación de muro	

Tabla 1-1: Acciones consideradas.

CivilCAD3000 obtiene como resultados finales los planos de geometría y planos de armaduras, las mediciones y las memorias de cálculo. Dentro de la memoria de cálculo, *CivilCAD3000* incluye un análisis del muro a través de la verificación de los diferentes estados límites considerados de acuerdo con las normativas seleccionadas.

- Hundimiento del terreno.
- Deslizamiento.
- Vuelco.
- Estabilidad global.
- Rotura por flexión.
- Rotura por cortante.
- Fisuración.

En cuanto a las normativas, *CivilCAD3000* considera la normativa española, los Eurocódigos y las AASHTO (Edición 2010).

Ámbito	Normativa de acciones	Normativa estructural	Normativa geotécnica
Normativa española	IAP-11	EHE-08	Guía de cimentaciones
Normativa Europea	EN-1991 / EN-1998	EN-1992	EN-1997
Normativa Americana	AASHTO 2010	AASHTO 2010	AASHTO 2010

Tabla 1-2: Normativas consideradas en el Módulo Muros de CivilCAD3000

2 ESTRUCTURA DEL MÓDULO

Al módulo Muros se accede al seleccionar la orden *Proyecto /Muro* del menú principal del programa o bien pinchando el botón correspondiente de la Barra de Proyectos. Al hacerlo, se abre la Ventana de Proyecto que permite activar las órdenes de gestión del módulo (abrir, cerrar y guardar archivos) así como la de generar un nuevo caso (mediante las opciones de *Configuración e Información general*).

Estas órdenes están estructuradas según el siguiente esquema:

E Sin Nombre		
Muro Proyecto Nuevo Abrir Guardar Guardar como Cerrar Configuración Información general	•	
	4	
Verificación	Resultado	
Normas españolas EHE08 / IAP11		H.
Unidades: M.K.S.	X: 0.000 Y: 0	.000

Figura 2-1: Ventana inicial del Módulo Muros.

2.1 Órdenes de Proyecto

Las órdenes de proyecto permiten abrir, guardar o cerrar un proyecto o crear uno nuevo. La extensión de los archivos creados será del tipo "*.*mur*".

Cuando se genera un nuevo caso deben introducirse los datos correspondientes a las opciones *Configuración* e *Información general* según se expone en los siguientes apartados. Una vez introducidos estos datos se desplegarán las opciones de *Entrada* (entrada de datos), *Análisis* (cálculo) y *Salida* (salida de resultados) según se muestra en la Figura 2.1-1.

E Sin Nombre		
Muro Proyecto Muro Abrir Guardar Guardar como Cerrar Configuración Información general Análisis Salida		
Verificación	Resultado	
Unidades: M.K.S.	X: 0.000	Y: 0,000
🛯 🕑 🛃 🐻 🔹 Calcular todo	Fijar / no fijar croquis	

Figura 2.1-1: Menú principal una vez entrada la información general.

2.1.1 Orden Nuevo

Esta orden permite cerrar el caso que esté activo en ese momento y generar un nuevo caso. El programa preguntará si el usuario quiere guardar el caso que se estuviese ejecutando y en caso afirmativo se deberá entrar el nombre con el que se quiere guardar dicho caso. Los proyectos del Módulo de Muros se guardan con la extensión '*.mur*'.

Guardar
¿Quiere guardar el proyecto actual?
Proyecto : sin nombre.mur
Si no guarda el proyecto, el programa volverá a ejecutar los cálculos al abrirse el proyecto de nuevo
Si No Cancelar

Figura 2.1.1-1: Ventana para guardar el caso activo.

Así mismo se debe introducir la ruta en la que se quiere guardar el caso.

Guardar como								 X
🔾 🗢 🖳 🕨 Equip	00	•		•	47	Buscar Equipo		٩
Organizar 👻								0
★ Favoritos ↓ Descargas ■ Escritorio ☑ Sitios recientes	•	Unidade	es de disco duro (2) Disc C (C:) 120 GB disponibles de 195 Dades (Di)	GB				
🕽 Bibliotecas	Ш	Dispositi	239 GB disponibles de 245 tivos con almacenam	GB	aíble	e (1)		
Disc C (C:)			Unidad de DVD RW (E:)					
🗣 Red	Ŧ							
N <u>o</u> mbre: <u>T</u> ipo: <mark>N</mark>	/lurc	os(*.mur)						•
 Ocultar carpetas 						<u>G</u> uardar	Canc	elar

Figura 2.1.1-2: Ventana para definir la ruta en la que guardar el caso.

Una vez guardado el caso activo *CivilCAD3000* vuelve a la pantalla de inicio de Proyecto, en la que el usuario podrá entrar la información en las opciones de *Configuración* e *Información General* para generar un nuevo caso.

2.1.2 Orden Abrir

Con esta orden*CivilCAD3000* permite abrir casos guardados con anterioridad. Al seleccionar esta opción aparece la ventana que permite seleccionar la ruta y el caso que se desea abrir.

Figura 2.1.2-1: Ventana para seleccionar el caso que se desea abrir.

Cuando se selecciona la orden *Abrir*, *CivilCAD3000* pregunta si se desea guardar el caso que esté abierto en ese momento, antes de seleccionar el caso que se desea abrir.

2.1.3 Orden Guardar

Esta opción permite grabar el caso que se está ejecutando sin salir del mismo ni del programa. El caso se graba sobre el mismo archivo que se ha generado.

Es importante señalar que, como consecuencia de la gestión de archivos que *CivilCAD3000* desarrolla al calcular un muro, **el usuario no debe proyectar más de un muro en un mismo directorio o carpeta de trabajo**.

2.1.4 Orden Guardar como

Esta opción permite grabar el caso que se está ejecutando con un nombre distinto al que se estaba ejecutando. Para ello *CivilCAD3000* preguntará la ruta en la que se quiere guardar y el nombre del archivo.

Guardar como			×
○○ □ ■ « 02	Casos3000 🕨 CasosMUR 🕨 EA5 🗸 👻	♣ Buscar EA5	٩
Organizar 👻 Nu	eva carpeta		:= • 🔞
🚺 Descargas	Nombre	Fecha de modifica	Tipo
Escritorio Sitios recientes	ea5.mur	11/07/2012 13:11	Archivo MUR
🥽 Bibliotecas	Ε		
💻 Equipo			
🏭 Disc C (C:)			
👝 Dades (D:)			
_	▼ (- F
N <u>o</u> mbre:			•
<u>T</u> ipo:	Muros(*.mur)		•
Ocultar carpetas		<u>G</u> uardar	Cancelar

Figura 2.1.3-1: Ventana para guardar un caso con un nuevo nombre.

El caso guardado con el nuevo nombre pasará a ser el caso activo.

Es importante señalar que, como consecuencia de la gestión de archivos que *CivilCAD3000* desarrolla al calcular un muro, **el usuario no debe proyectar más de un muro en un mismo directorio o carpeta de trabajo**.

2.1.5 Orden Cerrar

Esta orden permite cerrar el caso que se esté calculando. Cuando se selecciona esta opción aparece en pantalla una ventana que pregunta al usuario si desea guardar el caso. Si la respuesta es afirmativa se deberá introducir la ruta y el nombre del archivo con el que se quiere guardar el proyecto. Si es negativa se saldrá del Módulo de Muros sin guardar el caso.

2.1.6 Orden Configuración

Esta orden permite configurar los criterios de cálculo en cuanto a sistema de unidades, normativas, despieces y bases de precios. En la Figura 2.1.6-1 se muestra la ventana correspondiente a esta orden.

onfiguración		
Sistema de u	unidades	
Sistema:	S.I.	Modificar sistema de unidades
Normativa		
Ámbito:		Normas españolas
Normativa o	de acciones de cálculo:	IAP-2011
Normativa p	oara las verificaciones estructurales:	EHE-2008
Normativa p	oara las verificaciones geotécnicas:	Guía de cimentaciones
		Modificar Normativa
Despiece de	la armadura	
Despiece:	Sistema Métrico Europeo	Modificar despiece
Opciones ge	nerales	Modificar opciones generales
Base de pre	cios	
Base:	CivilCAD3000	Modificar base de precios
		Salir

Figura 2.1.6-1: Ventana de la orden Configuración.

Por defecto aparecerán las opciones que estén activas en el Menú general de *CivilCAD3000*. No obstante, el usuario podrá modificarlas con los botones '*Modificar sistema de unidades*', '*Modificar normativa*', '*Modificar despiece*' '*Modificar opciones generales*' y '*Modificar base de precios*'.

Estas opciones se podrán modificar únicamente antes de entrar en la ventana correspondiente a la opción *Información general*. Una vez introducida la información correspondiente a la Información general no será posible modificar ninguna de las opciones elegidas, ya que la información que se introduzca en los siguientes diálogos depende de las opciones que se haya seleccionado.

Sistema de unidades

Al seleccionar la opción Modificar sistema de unidades aparecerá la ventana de la Figura 2.1.6-2, que permite seleccionar entre los siguientes sistemas de unidades:

- Sistema MKS (metro-kilogramo-segundo).
- Sistema Internacional (metro-Newton-segundo).
- Sistema imperial (pies-libras-segundo).

Sistema de unidades	X
 Sistema metro – Kilogramo – segi 	undo (MKS)
Sistema internacional	
🔘 Sistema imperial	
	Aceptar Cancelar

Figura 2.1.6-2: Selección del sistema de unidades.

<u>Normativa</u>

Con la opción Modificar Normativa *CivilCAD3000* permite seleccionar la normativa a utilizar en el cálculo, lo cual afecta a las acciones aplicadas sobre la estructura y las verificaciones estructurales y geotécnicas analizadas.

CivilCAD3000 contempla las siguientes normativas:

- <u>Normas españolas</u>: Se consideran en este caso la normativa IAP11 para la definición de las acciones, la Instrucción EHE-08 para las verificaciones estructurales y la Guía de cimentaciones para las verificaciones geotécnicas.
- <u>Normas europeas</u>: Corresponde a los Eurocódigos. Concretamente al Eurocódigo EN-1991 y EN-1998 para las acciones de cálculo, el Eurocódigo EN-1992 para las verificaciones estructurales y el Eurocódigo EN-1997 para las verificaciones geotécnicas.
- <u>Normas americanas</u>: Se considera en este caso la norma AASHTO LRFD Bridge Design Specifications en su edición de 2010.

Normas españolas	Normas europeas	Normas americanas
Acciones sobre la estructura	Acciones sobre la estructura	Acciones sobre la estructura
Puente de carretera	Puente de carretera	Puente de carretera
IAP-2011	EN-1991 / EN-1998	Normas AASHTO
Puente de ferrocarril	Puente de ferrocarril	Puente de ferrocarril
IAPF-2007	EN-1991 / EN-1998	Normas AASHTO
Verificaciones estructurales	Verificaciones estructurales	Verificaciones estructurales
EHE-2008	@ EN-1992	Normas AASHTO
Verificaciones geotécnicas	Verificaciones geotécnicas	Verificaciones geotécnicas
 Guía de cimentaciones 	@ EN-1997	Normas AASHTO
CTE	0	

Figura 2.1.6-3: Selección de la normativa.

Despiece

La opción *Modificar despiece* permite seleccionar el tipo de despiece a utilizar en el cálculo del armado y en la generación de planos de armado. Un sistema de despiece define los diámetros de las barras de armado a utilizar, así como las distancias posibles entre barras de armado.

Modificar el despiece
Despiece
Sistema Métrico Europeo 📃 👻
Editar
Aceptar Cancelar

Figura 2.1.6-4: Selección del sistema de despiece.

CivilCAD3000 tiene definidos por defecto los sistemas de despiece que se especifican a continuación:

- Sistema métrico Europeo
- Sistema Soft métrico
- Sistema imperial americano
- Sistema Métrico Americano

El usuario puede definir un sistema de despiece nuevo en la opción Biblioteca/Despieces.

Desde la ventana de *Modificar el despiece*, se puede acceder a la definición del sistema de despiece con el botón *Editar*. En este caso aparecerá en pantalla la ventana de la Figura 2.1.6-5:

Despiece stema Métrico Europeo Perfinición de las barras de armado	vieces									
stema Métrico Europeo Definición de las barras de armado Denominación Diámetro nominal (mm) Peso (kg/m) Activar			Des	spiece						
Barra Denominación Diámetro nominal (mm) Peso (kg/m) Activar 1 06 6 0.22 0 2 08 8 0.40 0 3 010 10 0.62 0 4 012 12 0.89 0 5 014 14 1.21 0 6 016 16 1.58 0 7 018 18 2.00 0 8 020 20 2.47 0 9 022 22 2.98 0 Ayuda	tema Métric	o Europeo						-		
Barra Denominación Diámetro nominal (mm) Peso (kg/m) Activar 1 06 6 0.22 0 2 08 8 0.40 0 3 010 10 0.62 0 4 012 12 0.89 0 5 014 14 1.21 0 6 016 16 1.58 0 7 018 18 2.00 0 8 020 20 2.47 0 9 022 22 2.98 0 4yuda	efinición de	las barras	de armad	0						
1 26 6 0.22 V 2 08 8 0.40 V 3 010 10 0.62 V 4 012 12 0.89 Americano 5 014 14 1.21 Image: Constraint of the second of the se	Barra	Denom	inación	Diám	etro nomin (mm)	al	Peso (kg/m)	Activar		Sistema de unidades (i) M.K.S.
2 08 8 0.40 Image: Constraint of the second of the	1	Ø6				6	0.22	V		🔘 S.I.
3 Ø10 10 0.62 ✓ 4 Ø12 12 0.89 ✓ 5 Ø14 14 1.21 6 Ø16 16 1.58 ✓ 7 Ø18 18 2.00 8 Ø20 20 2.47 ✓ 9 Ø22 22 2.98 ✓ efinición de las separaciones ✓ Ayuda Separación Valor (m) Activar Sistema de unidades 1 0.100 ✓ S.I. 3 0.150 ✓ Americano 4 0.175 ✓ Americano 6 0.250 ✓ Ayuda	2	Ø8				8	0.40	V		Americano
4 Ø12 12 0.89 ✓ Añadir barra 5 Ø14 14 1.21 Eliminar barra 6 Ø16 16 1.58 ✓ Eliminar barra 7 Ø18 18 2.00 Ayuda 9 Ø22 22 2.98 ✓ Ayuda Separación Valor (m) Activar 1 0.100 ✓ Sistema de unidades 2 0.125 ✓ Americano 4 0.175 ✓ Americano 6 0.250 ✓ Ayuda	3	Ø10				10	0.62	V		
5 014 14 1.21 6 016 16 1.58 Image: Constraint of the second sec	4	Ø12				12	0.89	1		Añadir barra
6 016 16 1.58 Iminiar barra 7 018 18 2.00 Iminiar barra 8 020 20 2.47 Iminiar barra 9 022 22 2.98 Iminiar barra Ayuda Ayuda Definición de las separaciones Iminiar barra Ayuda Separación Valor (m) Activar Iminiar barra 1 0.100 Iminiar Iminiar barra 2 0.125 Iminiar Iminiar barra 3 0.150 Iminiar Iminiar barra 4 0.175 Iminiar barra Iminiar barra 5 0.200 Iminiar Iminiar barra Americano Añadir separación Iminiar barra Iminiar barra Iminiar barra Iminiar barra 3 0.150 Iminiar Iminiar barra 4 0.175 Iminiar barra Iminiar barra 8 0.350 Iminiar barra Iminiar barra Ayuda Ayuda Iminiar barra Iminiar barra	5	Ø14				14	1.21			
7 018 18 2.00 8 020 20 2.47 7 9 022 22 2.98 • Ayuda Image: Separación de las separaciones 1 0.100 • • • Ayuda 2 0.125 • • S.I. • S.I. 3 0.150 • • Americano Añadir separación 4 0.175 • • Americano 6 0.250 • • Ayuda	6	Ø16				16	1.58	V		Eliminar barra
8 Ø20 20 2.47 Ø Ayuda 9 Ø22 22 2.98 Valor (m) Ayuda Definición de las separaciones Sistema de unidades Image: Sistema de unidades Image: Sistema de unidades 1 0.100 Ø Image: Sistema de unidades Image: Sistema de unidades 2 0.125 Ø S.I. Image: Sistema de unidades 4 0.175 Ø Americano Americano 4 0.175 Ø Image: Sistema de unidades Image: Sistema de unidades 5 0.200 Ø Americano Americano Añadir separación Eliminar separación Eliminar separación 8 0.350 Ø Ayuda	7	Ø18				18	2.00			
9 Ø22 22 2.98 ▲ Ayuda Definición de las separaciones Sistema de unidades Image: Sistema de unidades Image: Sistema de unidades 1 0.100 Image: Sistema de unidades Image: Sistema de unidades Image: Sistema de unidades 2 0.125 Image: Sistema de unidades Image: Sistema de unidades Image: Sistema de unidades 3 0.150 Image: Sistema de unidades Image: Sistema de unidades Image: Sistema de unidades 4 0.175 Image: Sistema de unidades Image: Sistema de unidades Image: Sistema de unidades 5 0.200 Image: Sistema de unidades Image: Sistema de unidades Image: Sistema de unidades 6 0.250 Image: Sistema de unidades Image: Sistema de unidades Image: Sistema de unidades 7 0.300 Image: Sistema de unidades Image: Sistema de unidades Image: Sistema de unidades 8 0.350 Image: Sistema de unidades Image: Sistema de unidades Image: Sistema de unidades 8 0.350 Image: Sistema de unidades Image: Sistema de unidades Image: Sistema de unidades 1 Image: Sistema de unidades Image: Sistema de unidades Image: Sistema de unidades Image: Sistema de unidades 8 Image: Sistema	8	Ø20				20	2.47	V		
Separación de las separaciones 1 0.100 2 0.125 3 0.150 4 0.175 5 0.200 6 0.250 7 0.300 8 0.350	9	Ø22				22	2.98		-	Ayuda
1 0.100 ♥ 2 0.125 ♥ 3 0.150 ♥ 4 0.175 ♥ 5 0.200 ♥ 6 0.250 ♥ 7 0.300 ♥ 8 0.350 ♥ Ayuda Ayuda	efinición de Separ	las separa ación ⊿	valor (m)	Activar		Sistema de	unidade	s	K.S.
2 0.125 ✓ 3 0.150 ✓ 4 0.175 ✓ 5 0.200 ✓ 6 0.250 ✓ 7 0.300 ✓ 8 0.350 ✓ Ayuda Ayuda	1	1		0.100	V				9 M.I	N.5.
3 0.150 V 4 0.175 V 5 0.200 V 6 0.250 V 7 0.300 V 8 0.350 V Ayuda	2	2		0.125	v				5.I	
4 0.1/5 ✓ 5 0.200 ✓ 6 0.250 ✓ 7 0.300 ✓ 8 0.350 ✓ Añadir separación Eliminar separación Ayuda	3	3		0.150	V				🔿 Am	nericano
5 0.200 ✓ 6 0.250 ✓ 7 0.300 ✓ 8 0.350 ✓ Añadir separación Eliminar separación Añadir yanta	4	1		0.175	V				L	
6 0.250 ♥ 7 0.300 ♥ 8 0.350 ♥ Ayuda	5	5		0.200	×		Añadir sep	aración		
7 0.300 V 8 0.350 V Ayuda	6	,		0.250			Eliminar ser	paración		
Ayuda		/ >		0.300						
		,		0.550	V		Ayu	la		
				_					, ,	
Aceptar										Aceptar Cancelar

Figura 2.1.6-5: Edición del sistema de despiece de armado.

En esta ventana se puede modificar, definir o eliminar las barras a utilizar, definir qué barras se quiere utilizar, modificar el diámetro y peso de las barras y definir las separaciones que se quiere considerar en la obtención del armado. Las modificaciones que se realicen solo afectarán al caso que se está ejecutando, no modificándose por tanto el sistema de despiece de la Biblioteca del programa.

En la obtención del armado, *CivilCAD3000* solo utilizará aquellas barras y separaciones que estén activadas.

Opciones generales

Con la opción *Modificar opciones generales*, se permite modificar opciones de funcionamiento del programa:

- Activar/desactivar la opción de generar archivos ASCII del cálculo matricial para cada tipo de carga.

- Activar/desactivar la opción de actualizar los resultados del cálculo cuando se modifique algún dato.
- Ocultar la barra de progreso del cálculo.
- Activar/desactivar la opción de guardar automáticamente los dibujos asociados al proyecto cuando se graba un caso.
- Activar/desactivar la señal acústica que alerta de errores detectados en la revisión de datos.

Opciones generales
🔲 Generar archivos ASCII del cálculo matricial para cada tipo de carga.
Actualizar resultados automáticamente
☑ Ejecutar la revisión de datos entrados por el usuario
Ocultar automáticamente la barra de progreso
Guardar dibujos asociados al proyecto
Emitir señal acústica al no superar las revisiones de datos
Aceptar

Figura 2.1.6-6: Ventana de Opciones generales.

Base de precios

Con la opción *Modificar base de precios* se permite seleccionar la base de precios a utilizar para la obtención de las mediciones y el presupuesto, de entre las bases de precios existentes en la biblioteca de bases de precios.

Modifica	r la base de prec	ios 🛛 🗶
В	ase de precios	
	Editar	
	Aceptar	Cancelar

Figura 2.1.6-7: Ventana de selección de la base de precios.

Con la opción Editar se accede a la base de precios, pudiéndose modificar los precios a utilizar. Los cambios realizados solo afectan al caso que se está ejecutando, no modificándose los precios en la base de precios de la biblioteca del programa.

2.1.7 Orden Información general

La orden Información general permite acceder a la ventana de introducción de los datos de identificación del proyecto.

El proyecto se identifica por el *Nombre del proyecto*, el *Nombre de la estructura* y el *Nombre del elemento estructural*. El usuario debe introducir estos nombres (cadena alfanumérica) que se reproducirán en los distintos listados de la salida de resultados. Cualquiera de los tres campos puede opcionalmente dejarse vacío.

En esta misma ventana se especifica el *Tipo de estructura*, la *Funcionalidad de la estructura* y la *Clase de estructura*. En la versión actual del programa solo se permite una opción para el Tipo de estructura (muros ejecutados *in situ*) y para la Funcionalidad de la estructura (muros de contención de tierras). Para la Clase de la estructura se puede seleccionar entre la opción de muro de canto variable o muro escalonado.

Tipo de estructura	: Muro de ejecución in situ.
Funcionalidad de la estructura	: Muro de contención.
Clase de estructura	: Canto variable o escalonado.

Información general		×
Identificación del proyecto	Nombre 1	
Nombre del proyecto: Nombre de la estructura:	Nombre 2	<u>j</u> .
Nombre del elemento estructural:	Nombre 3	
Tipo de estructura Muro in situ	Nivel de ejecución Elemento Control de ejecución	
Funcionalidad de la estructura Muro de contención	Alzado Normal Zapata Normal	
Clase de estructura Escalonado		
Por definir Canto variable Escalonado		
	Ayuda Aceptar Cancelar	

Figura 2.1.7-1: Selección de la Clase de estructura.

Además según sea la normativa seleccionada se debe entrar la información adicional que se especifica a continuación para cada una de las normativas.

2.1.7.1 Normativa española

En la Figura 2.1.7.1-1 se muestra la ventana correspondiente a la orden Información general para el caso de que la normativa seleccionada sea la española.

En este caso, además de introducir la información relativa a la identificación del proyecto el usuario debe definir la vida útil de la estructura y el nivel de ejecución (definido en el artículo 92.3 de la EHE-08, con las 2 posibilidades de Normal o Intenso) para cada uno de los elementos estructurales que conforman la estructura, que son:

- Alzado del muro.
- Zapata del muro.

El nivel de ejecución y la vida útil intervienen en el cálculo del recubrimiento geométrico mínimo de las armaduras.

Información general	
Identificación del proyecto	
Nombre del proyecto:	Nombre 1
Nombre de la estructura:	Nombre 2
Nombre del elemento estructural:	Nombre 3
Tipo de estructura Muro in situ Funcionalidad de la estructura Muro de contención Clase de estructura Canto variable	Vivel de ejecución Elemento Alzado Normal Zapata Normal
100 años	Ayuda Aceptar Cancelar

Figura 2.1.7.1-1: Ventana de Información general para las normas españolas.

Por defecto *CivilCAD3000* propone una vida útil de 100 años, que es el valor definido en la Instrucción IAP11. Así mismo considera de entrada un nivel de ejecución normal, al tratarse de una estructura ejecutada *in situ* de hormigón armado.

2.1.7.2 Normativa europea

En la Figura 2.1.7.2-1 se muestra la ventana correspondiente a la orden Información general para el caso de que la normativa seleccionada sea la europea.

En este caso, además de introducir la información relativa a la identificación del proyecto el usuario debe definir la vida útil de la estructura y el nivel de ejecución previsto para cada uno de los elementos estructurales que conforman la estructura, que son:

- Alzado del muro
- Zapata del muro

El nivel de ejecución y la vida útil intervienen en el cálculo del recubrimiento geométrico mínimo de las armaduras.

Información general	×
Identificación del proyecto Nombre del proyecto: Nombre de la estructura: Nombre del elemento estructural:	Nombre 1 Nombre 2 Nombre 3
Tipo de estructura Muro in situ Funcionalidad de la estructura Muro de contención Clase de estructura Canto variable	Nivel de ejecución Elemento Alzado Normal Zapata Normal
Vida útil 100 años	Ayuda Aceptar Cancelar

Figura 2.1.7.2-1: Ventana de Información general para las normas europeas.

Los Eurocódigos no definen explícitamente los niveles de control, aunque sí se consideran en diferentes aspectos. *CivilCAD3000* define los siguientes niveles de control posibles para un muro calculado con los Eurocódigos:

- Bajo.
- Normal.
- Intenso.

Los niveles de control influyen en los aspectos siguientes:

- <u>Recubrimientos geométricos mínimos de las armaduras</u>: en la definición del margen de recubrimiento.

En el cálculo de los recubrimientos, los niveles de control definidos por *CivilCAD3000* corresponden a:

- o <u>Nivel Bajo</u>: Cuando no corresponde a nivel normal ni intenso.
- <u>Nivel Normal</u>: Fabricación sujeta a un nivel de aseguramiento de la calidad en el cual se incluyen mediciones de los recubrimientos.
- <u>Nivel intenso</u>: Cuando puede asegurarse un control muy riguroso de la medición de recubrimientos y cuando las no conformidades son rechazadas (elementos prefabricados por ejemplo).
- En la definición de la Clase Estructural:

En el apartado 4.4.1.2 y en el Anejo E del EN-1992 se define la Clase estructural, la cual depende del nivel de control en la ejecución. *CivilCAD3000* asocia nivel Intenso a lo que el Eurocódigo define como '*Control de Calidad Especial*'.

Por defecto *CivilCAD3000* propone una vida útil de 100 años. Así mismo considera de entrada un nivel de ejecución normal, al tratarse de una estructura ejecutada *in situ* de hormigón armado.

2.1.7.3 Normativa americana

Las normas americanas no requieren de la definición de la vida útil o del nivel de control en la ejecución, por lo que no es necesario introducir ninguna información adicional a la de identificación del proyecto.

Información general	×
Identificación del proyecto	
Nombre del proyecto:	Nombre 1
Nombre de la estructura:	Nombre 2
Nombre del elemento estructural:	Nombre 3
Tipo de estructura Muro in situ Funcionalidad de la estructura Muro de contención	
Clase de estructura Canto variable	
	Ayuda Aceptar Cancelar

Figura 2.1.7.3-1: Ventana de Información general para las normas americanas.

2.2 Orden Entrada

Se refiere a la entrada de datos para la definición geométrica del muro y para la definición de los parámetros que intervienen en el cálculo (acciones y coeficientes de seguridad).

Permite abrir y modificar los diálogos de definición del muro, de los materiales, del terreno y de las acciones sobre el mismo. Esta orden se explica en el apartado 3 de este documento.

2.3 Orden Análisis

Con esta opción se accede a los diálogos correspondientes al análisis de la estructura para cada uno de los cálculos a realizar, permitiendo la consulta de los resultados obtenidos. Concretamente permite consultar y editar los cálculos siguientes:

- Obtención de los esfuerzos correspondientes a cada una de las acciones.
- Análisis del deslizamiento.
- Análisis del vuelco.
- Análisis de la estabilidad global.
- Análisis del hundimiento del terreno.
- Cálculo de rotura por flexión.
- Cálculo a fisuración.
- Cálculo de rotura por cortante.
- Análisis de las deformaciones.
- Generación del armado.
- Mediciones.

Esta orden se explica detalladamente en el apartado 4 de este manual.

2.4 Orden Salida

Permite acceder a las órdenes de obtención de resultados, como son la memoria de cálculo, el listado de mediciones, las figuras de definición geométrica del muro y los planos de armadura.

Esta orden se explica detalladamente en el apartado 5 de este manual.

3 ENTRADA DE DATOS

Al seleccionar la orden Entrada se despliegan en el Menú Principal las opciones necesarias para poder introducir todos los datos que se requieren para el cálculo del muro (ver Figura 3-1). Estas opciones son:

- Geometría: Se introducen los datos geométricos del muro.
- *Terreno:* Se introduce la geometría del terreno del trasdós y los parámetros geotécnicos de las capas del terreno.
- *Materiales:* Se seleccionan los materiales (hormigón y acero) asociados a la zapata y alzado del muro
- Clase de exposición: Se definen las clases de exposición (agresividad).
- Fisuración: Se definen los valores admisibles para la fisuración del hormigón.
- Acciones: se definen los valores de las acciones que actúan sobre el muro.
- *Coeficientes de mayoración de acciones:* Se definen los coeficientes de mayoración de acciones asociados a cada estado límite.
- *Coeficientes de seguridad y combinación:* Se definen los coeficientes de seguridad a considerar según la normativa, así como los coeficientes de combinación de acciones (solo aparece para las normativas española y europea).
- *Factores de resistencia:* Se definen los factores de resistencia según la normativa AASHTO (sólo aparece para la normativa americana).
- Armadura: Se definen los recubrimientos y la configuración para el armado.
- *Configuración*: Se definen los criterios de cálculo del muro.

E Sin Nombre			
	icciones ibinación		
Verificación	Resultado		
Normas españolas EHE08 / IAP11			.H.
Unidades: M.K.S.	X: 0.000 Fijar / no fijar croquis	Y: 0.000	**

Figura 3-1: Opciones de la orden *Entrada* del Menú principal para las normativas española y europea.

E Sin Nombre	
 Muro Proyecto Entrada Geometría Terreno Materiales Clases de exposición Fisuración Acciones Coeficientes de mayoración de a Factores de resistencia Armadura Configuración Análisis Salida 	acciones
Verificación	Resultado
Normas americanas AASHTO 2010	X. 0.000 X. 0.000
Calcular todo	Fijar / no fijar croquis

Figura 3-2: Opciones de la orden *Entrada* del Menú principal para la normativa americana (AASHTO).

En los siguientes apartados se explica cada una de estas opciones.

3.1 Orden Geometría

Al seleccionar la opción geometría se despliegan las distintas opciones que permiten definir los distintos elementos que conforman el muro (ver Figura 3.1-1). Las opciones son:

- *Generación automática*: Permite generar de forma rápida la geometría de un muro.
- *Planta del paramento*: Definición de la planta del paramento del muro a través de la longitud de cada módulo o de las coordenadas del paramento.
- Zapata: Definición de la geometría de la zapata y del tacón si lo hubiere.
- *Alzado*: Definición de la geometría del alzado del muro.

Sin Nombre	
Muro Coeficientes de seguridad y combin Armadura Armadura Armadura Aradura Aroy Coeficientes de seguridad y combin Armadura Arm	ones ación
Verificación	Resultado
Normas españolas EHE08 / IAP11	<u>ين</u>
Calcular todo Fi	jar / no fijar croquis

Figura 3.1-1: Opciones de la orden *Geometría* del Menú principal.

En los siguientes apartados se explica cada uno de las opciones.

3.1.10rden Generación automática del muro

Para facilitar la entrada de datos del muro en el caso de un muro formado por un único módulo con geometría longitudinal constante (la sección transversal del muro es constante en todo el módulo), el programa propone una generación automática en la que únicamente se pide definir las dimensiones básicas de la sección; si en la opción de *Información General* se ha seleccionado la tipología de canto variable, aparecerá en pantalla el diálogo que se muestra en la Figura 3.1.1-1, mientras que si se ha seleccionado la opción de muro escalonado aparecerá el diálogo que se muestra en la Figura 3.1.1-2.

Figura 3.1.1-1: Ventana de definición geométrica del muro de canto variable con la opción de generación automática.

Figura 3.1.1-2: Ventana de definición geométrica del muro escalonado con la opción de generación automática.

<u>Muro de canto variable</u>

Para la definición del alzado debe introducirse la altura del muro (H), el espesor del muro en coronación (D) y la pendiente (tanto por uno) del paramento visto (E) y del paramento del trasdós (T).

La zapata queda definida por la distancia A de la zarpa delantera al plano vertical que pasa por el punto de intersección de la coronación del muro con el paramento visto, la anchura de la zapata (B) y el canto de la misma (C). En la opción de generación automática no es posible definir la base de la zapata inclinada.

El tacón se define a partir de la distancia del arranque del mismo al extremo de la zarpa delantera (T1), el espesor mínimo (T2), el sobreespesor en el empotramiento con la zapata (T3) y la profundidad (T4).

<u>Muro escalonado</u>

Para la definición del alzado debe introducirse la altura del muro (H), la altura del escalón inferior (J), el espesor del muro en coronación (D) y el espesor del muro en el escalón inferior (K). La zapata y el tacón se definen de igual modo que para los muros de canto variable.

En ambos casos se debe introducir los valores correspondientes a la geometría de la sección transversal del muro, así como los valores que definen la geometría del terreno en el trasdós según el criterio que se define en la Tabla 3.1.1-1.

Criterio de definición del terreno del trasdós						
	Ángulo β	Hs				
Terreno horizontal	0	0				
Terreno con talud infinito	>0	0				
Tramo con talud inclinado hasta una determinada altura	>0	>0				

 Tabla 3.1.1-1: Criterio de definición de la geometría del terreno en el trasdós.

Una vez introducidos estos parámetros se debe pulsar el botón *Generar muro*. En este momento el programa validará los datos introducidos y generará las coordenadas y cotas del muro. La cara superior de la zapata se sitúa a la cota cero (0). No será por tanto necesario entrar los datos correspondientes a los diálogos *Planta del paramento*, *Zapata* y *Alzado*. Faltará todavía por completar el resto de datos de definición del proyecto, como los materiales, los parámetros geotécnicos del terreno, los recubrimientos de armadura pasiva, etc., para lo cual se deberá entrar en las opciones correspondientes.

El programa guarda en el archivo de proyecto los valores que se introduzcan en el diálogo de generación automática.

3.1.2 Orden Planta del paramento

La posición en planta del muro queda definida por la proyección en planta de la arista frontal de la coronación del muro, que define el plano vertical de referencia.

Figura 3.1.2-1: Definición del plano de referencia.

CivilCAD3000 permite dos formas alternativas de definición en planta del paramento, la *definición por longitudes* o la *definición por coordenadas*.

Definición por longitudes

En este caso se asume que los distintos módulos del muro se sitúan en una alineación recta situada según el eje X. El usuario debe definir únicamente el número de módulos que componen el muro y la longitud de cada uno de ellos. La opción *Añadir módulo* permite crear un nuevo módulo, el cual se añade a continuación de los definidos anteriormente. La opción *Eliminar módulo*, borrará el último módulo introducido.

Una vez añadido un módulo se debe definir su longitud (L) en la casilla correspondiente.

Figura 3.1.2-2: Definición del paramento por longitudes.

<u>Definición por coordenadas</u>

Si se selecciona la opción de *Definición por coordenadas* el usuario debe introducir las coordenadas (X, Y) del paramento de referencia. Al igual que en el caso anterior, la opción *Añadir módulo* permite crear un nuevo módulo, el cual se añade a continuación de los definidos anteriormente. La opción *Eliminar módulo*, borrará el último módulo introducido.

El ángulo que forman los paramentos de dos módulos contiguos debe estar comprendido entre 170 y 230 grados centesimales (g). *CivilCAD3000* dispondrá la junta entre las zapatas de dos módulos contiguos según la bisectriz del ángulo que forman los paramentos. Para los módulos extremos el usuario debe introducir el valor del ángulo interior que forma el paramento de referencia del muro con la cara exterior lateral de la zapata (ángulos α_1 y α_2), el cual debe estar comprendido entre 85 y 115 grados centesimales (g).

Figura 3.1.2-3: Definición del paramento por coordenadas.

Una vez introducidos los datos con cualquiera de las dos opciones, se debe pinchar la opción *Aceptar*. En este momento el programa validará los datos introducidos comprobando su coherencia y verificando que la geometría se encuentra dentro de los rangos de validez.

3.1.3 Orden Zapata

En la opción Zapata se debe definir la geometría de la zapata y del tacón si lo hubiere, para cada uno de los módulos que componen el muro. Al seleccionar esta opción aparecerá en pantalla el diálogo que se muestra en la Figura 3.1.3-1.

Figura 3.1.3-1: Definición de la zapata.

Para cada módulo, se debe definir la distancia A del extremo de la zarpa delantera al paramento de referencia (ver definición en apartado 3.1.2), la anchura total de la zapata (B), el espesor de la zapata en el extremo de la zarpa delantera, y la pendiente (en tanto por uno) de la inclinación de la base de la zapata respecto la horizontal (S).

En el caso de querer contemplar un tacón para aumentar la resistencia al deslizamiento se deberá introducir la distancia del tacón al extremo de la zarpa delantera (T1), la anchura del tacón en su extremo inferior (T2), el sobreespesor en el empotramiento con la zapata (T3) y la profundidad (T4).

Si se ha dispuesto la base de la zapata inclinada, *CivilCAD3000* no permite considerar la presencia de un tacón.

Finalmente se debe introducir el espesor del hormigón de limpieza que se dispondrá bajo la zapata. Este valor se considera únicamente a efectos de medición y de planos de geometría.

Una vez introducidos los valores se debe seleccionar la opción Aceptar.

3.1.4 Orden Alzado

Al seleccionar la opción Alzado, aparecerá en pantalla un diálogo que permitirá definir la geometría del alzado; dicho diálogo será distinto para los casos de muro de canto variable o muro escalonado.

Muro de canto variable

En el caso de muro de canto variable aparecerá en pantalla el diálogo que se muestra en la Figura 3.1.4-1. El alzado del muro queda definido por las siguientes variables:

- *Cota en coronación (Z s):* En cada junta se define la cota de coronación del muro. *CivilCAD3000* no permite definir saltos de discontinuidad en la coronación entre dos módulos.
- *Pendiente del paramento visto (E):* Pendiente (en tanto por uno) respecto de la vertical, del paramento visto del muro, definida en cada junta entre módulos. Se adopta así la misma pendiente en el extremo final del módulo anterior de la junta y en el extremo inicial del módulo posterior de la junta, garantizando la continuidad del paramento visto. En secciones intermedias de un módulo se interpola linealmente la pendiente del paramento visto, a partir de las pendientes definidas en las dos juntas del módulo.
- *Canto en coronación (D):* Se define en esta casilla el espesor del muro en la coronación. Se adopta un único valor en cada junta. En secciones intermedias de un mismo módulo se interpola linealmente.
- *Cota de la zapata (Z c1 y Z c2):* En este caso el usuario debe definir para cada módulo la cota de la cara superior de la zapata en la junta anterior (Z_{c1}) -lado izquierdo- y posterior (Z_{c2}) -lado derecho-. En consecuencia, no es necesario dar continuidad en alzado a las zapatas de dos módulos contiguos.
- *Pendiente del paramento del trasdós (T₁ y T₂)*: Para cada junta de cada módulo se debe introducir la pendiente (en tanto por uno) del paramento del trasdós respecto de la vertical.

Figura 3.1.4-1: Definición del alzado en muros de canto variable.

Las pendientes de los paramentos no pueden introducirse con valor negativo; *CivilCAD3000* no permite considerar muros en los que el espesor disminuye con la altura.

<u>Muro escalonado</u>

En el caso de muro escalonado aparecerá en pantalla el diálogo que se muestra en la Figura 3.1.4-2. El alzado del muro queda definido por las siguientes variables.

- *Cota en coronación (Z s):* En cada junta se define la cota de coronación del muro. *CivilCAD3000* no permite definir saltos de la coronación entre dos módulos.

- *Cota de la zapata (Z*_{c1} y Z_{c2}): En este caso el usuario debe definir para cada módulo la cota de la cara superior de la zapata en la junta anterior (Z_{c1}) -lado izquierdo- y posterior (Z_{c2}) -lado derecho-. En consecuencia, no es necesario dar continuidad en alzado a las zapatas de dos módulos contiguos.
- *Canto escalón superior (D s):* Se define en esta casilla el espesor del muro en el tramo superior del mismo.
- *Canto escalón inferior* (D_I) : Se define en esta casilla el espesor del muro en el tramo inferior del mismo.
- Altura escalón inferior (H_I) : Altura del escalón inferior del muro, medida desde la cara superior de la zapata.

Figura 3.1.4-2: Definición del alzado en muros escalonados.

3.2 Orden Terreno

La orden *Terreno* permite definir la geometría del terreno, así como los parámetros geotécnicos de las distintas capas del terreno y los parámetros de adherencia y rozamiento terreno-muro. Al seleccionar la opción *Terreno*, aparecerá en pantalla la ventana que se muestra en la Figura 3.2-1.

no			-				<u>_</u>						
eometría									n rF	Parámetros	contacto hormigón - te	erreno	
	7-			Terrer	no horizonta	al.							
			0) Terrer	no con talud	infinito			[Paramento vertical
) Terrer	no con un tr	amo inclinado	o y un tramo h	orizontal			Base de la z	apata	muro
- 1				Junta Z1(m) ZT(m)					Сара	Ángulo de rozamiento zapata - terreno	Adherencia zapata - terreno	Ángulo de rozamiento paramento - terreno	
21			,	1	0.000	0.000					(°)	(t/m ²)	(°)
			•	2	0.000	0.000				1	0.0	0.00	0.0
2				3	0.000	0.000							
arámetros	geotécnicos												
Сара	Nombre	Tipo	Cota inf	ferior C	Densidad natural	Densidad saturada	Ángulo de rozamiento	Cohesión	Pre	esión de ndimiento	Añadir cap	a	
-			(m)	(t/m 3)	(t/m 3)	(°)	(t/m 2)		(t/m²)	Eliminar cap	a	
1		Cohesivo	•		0.00	0.00	0.0	0.00		0.00			

Figura 3.2-1: Ventana correspondiente a la orden Terreno.

<u>Geometría del terreno</u>

En el diálogo superior izquierdo de la ventana *Terreno* se define la geometría del terreno (ver Figura 3.2-2).

Ter	reno														×
IF	Geometría									P	Parámetros	contacto hormigón - t	erreno		
	Z T Z T 2 3 C Terreno horizontal ○ Terreno con utalud infinito ○ Terreno con utamo inclinado y un tramo horizontal ○ Terreno con un tramo inclinado y un tramo horizontal ○ Terreno con un tramo inclinado y un tramo horizontal ○ Terreno con un tramo inclinado y un tramo horizontal ○ Terreno con un tramo inclinado y un tramo horizontal ○ Terreno con un tramo inclinado y un tramo horizontal ○ Terreno con un tramo inclinado y un tramo horizontal ○ Terreno con un tramo inclinado y un tramo horizontal ○ Terreno con un tramo inclinado y un tramo horizontal ○ Terreno con un tramo inclinado y un tramo horizontal ○ Terreno con un tramo inclinado y un tramo horizontal ○ 1 0.000 0.000 ○ 3 0.000 0.000 ○ 1 0.0000 0.0000 ○ 1 0.000 0.000 ○ 1 0.0000 0.0000 ○ 1 0.0000 0.000						Capa 1	Base de la : Ángulo de rozamiento zapata - terreno (°) 0.0	Adherencia zapata - terreno (t/m²) 0.00	Paramento vertical muro Ángulo de rozamient paramento - terrene (°) 0	0				
	Сара	Nombre	Тіро	Cota ii	inferior 'm)	Densidad natural (t/m 3)	Densidad saturada (t/m³)	Ángulo de rozamiento (°)	Cohesión (t/m²)	Pre hun	esión de ndimiento (t/m²)	Añadir cap	a		
	1		Cohesivo	•		0.00	0.00	0.0	0.00		0.00				
												Ayuda	Aplicar	Aceptar Cano	elar

Figura 3.2-2: Definición de la geometría del terreno.

En este diálogo se debe seleccionar en primer lugar el tipo de perfil del terreno que se desea considerar, escogiendo entre las tres opciones disponibles:

- Terreno horizontal.
- Terreno con talud infinito.
- Talud formado por un primer tramo inclinado y un segundo tramo horizontal.

En el caso de seleccionar la opción de terreno horizontal, se deberá definir la cota del terreno situado por delante del muro (Z $_{I}$) así como la cota del terreno en el trasdós (Z $_{T}$).

Estas cotas se definen en las juntas de los módulos que conforman el muro. Para secciones intermedias de cada módulo se interpola linealmente.

En el caso de seleccionar la opción de talud inclinado además de definir las dos cotas anteriores se debe introducir el ángulo del talud, en grados sexagesimales, en cada junta del talud (ver Figura 3.2-3). En este caso la cota Z_T se define en el contacto del talud con el paramento del trasdós del muro.

eno	-			-		2					
Seometría								Parámetro	s contacto hormigón - te	erreno	
	-		🔘 Ter	reno horizont	al						
	ZΤ	10 1	Ter	reno con talu	d infinito						Paramento vertical
		P	🔿 Tei	reno con un t	ramo inclinado	o y un tramo h	norizontal		Base de la z	apata	muro
2				7 / \				Capa	Ángulo de rozamiento	Adherencia	Ángulo de rozamiento
		Junta	a Zi(m)	Z T (M)	β(°)			zapata - terreno	zapata - terreno	paramento - terreno	
ZI		2	1	0.000	0.000	0.0			(°)	(t/m²)	(°)
	- 1	2	2	0.000	0.000	0.0		1	0.0	0.00	0.0
3			3	0.000	0.000	0.0					
		4	4	0.000	0.000	0.0					
arametros g	eotecnicos										
Сара	Nombre	Tipo	Cota inferior	Densidad natural	Densidad saturada	Ángulo de rozamiento	Cohesión	Presión de hundimiento	Añadir cap	a	
4			(m)	(t/m 3)	(t/m3)	(°)	(t/m²)	(t/m²)	Eliminar cap	a	
1		Cohesivo 🗣		0.00	0.00	0.0	0.00	0.00			
									Aunda	Antinen	Assets Count

Figura 3.2-3: Definición de la geometría del terreno para talud inclinado infinito.

Finalmente si la opción seleccionada es la correspondiente a un perfil mixto con un tramo inclinado y un tramo horizontal se deberá introducir adicionalmente la diferencia de altura entre la cota del terreno en el contacto con el muro y la cota del terreno en el tramo horizontal (H $_T$) (ver Figura 3.2-4).

reno	-		_				2						
Geometría				Terre	eno horizonta	al				Parámetros	s contacto hormigón - t	erreno	
	ZT	2 _Τ β 1 Η		Terreno con talud infinito Terreno con un tramo indinado y un tramo horizontal							Base de la z	apata	Paramento vertical muro
					Z1 (m)	Z _T (m)	β(°)	H _T (m)		Сара	Ángulo de rozamiento zapata - terreno	Adherencia zapata - terreno	Ángulo de rozamiento paramento - terreno
ZI				1	0.000	0.000	0.0	0.000		4	(°)	(t/m²)	(°)
		2		2	0.000	0.000	0.0	0.000		1	0.0	0.00	0.0
2				3	0.000	0.000	0.0	0.000					
Parámetros	geotécnicos	3		4	0.000	0.000	0.0	0.000					
Сара	Nombre Tipo Cota		inferior	Densidad natural	Densidad saturada	Ángulo de rozamiento	Cohesión	Pr hu	resión de ndimiento	Añadir cap	a		
4				(m)	(t/m 3)	(t/m 3)	(°)	(t/m²)		(t/m²)	Eliminar cap	a	
1		Cohesivo	-		0.00	0.00	0.0	0.00		0.00			
											Ayuda	Aplicar	Aceptar Cancela

Figura 3.2-4: Definición de la geometría del terreno para talud mixto.

Cabe mencionar que la superficie del terreno puede situarse por debajo de la coronación del muro, pero obviamente nunca por encima.

Parámetros geotécnicos

En este diálogo se define la geometría de las distintas capas de terreno y los parámetros geotécnicos que la caracterizan.

Con el botón *Añadir capa* se genera una nueva capa, mientras que con el botón *Eliminar capa* se borra la última capa. Las capas se deben introducir de forma decreciente, de forma que la primera capa corresponde a la situada más arriba.

Una vez creadas las capas del terreno se debe introducir para cada una de ellas los siguientes parámetros:

- Nombre: Se debe introducir una cadena alfanumérica que identificará la capa.
- *Tipo:* El terreno se clasifica según su naturaleza en cohesivo, granular o roca.
- *Cota inferior:* Se debe introducir la cota del nivel inferior de la capa. En la última capa no se permite introducir ningún valor ya que se considera infinita.
- Densidad natural: Corresponde a la densidad aparente del terreno.
- *Densidad saturada:* Corresponde a la densidad del terreno en condiciones de saturación (con todos los huecos colmatados de agua).
- *El ángulo de rozamiento interno φ*: Corresponde al ángulo de rozamiento interno del terreno (en condiciones drenadas), que se utilizará para el cálculo de los empujes activo y pasivo.
- *Cohesión:* Cohesión drenada del terreno.
- *Presión de hundimiento:* Corresponde a la presión de hundimiento del terreno. Estrictamente, este parámetro depende de diversos factores, entre los cuales hay que distinguir la inclinación dela carga, la anchura de la zapata equivalente, etc. por lo que el usuario deberá introducir el valor correspondiente a las condiciones correspondientes a la situación pésima. A partir de la presión de hundimiento, *CivilCAD3000* obtiene la presión admisible para cada situación y combinación a partir de los factores de seguridad definidos en la ventana correspondiente.

Figura 3.2-5: Definición de las capas del terreno.

Parámetros contacto hormigón-terreno

En este diálogo se define el ángulo de rozamiento entre el trasdós del muro y el terreno, y los parámetros de rozamiento y adherencia en la base de la zapata.

reno	-		-	-		-2-					
Geometría	Z-) Te	reno horizont	al			Parámetros	; contacto hormigón - te	erreno	
7.			© Te	Terreno con talud infinito Terreno con un tramo inclinado y un tramo horizontal Junta Z ₁ (m) Z ₁ (m)					Base de la zapata		Paramento vertical muro
			Junt					Сара	Ángulo de rozamiento zapata - terreno	Adherencia zapata - terreno	Ángulo de rozamiento paramento - terreno
-1		2	1	0.000	0.000			1	(°) 0.0	(t/m²) 0.00	(°) 0.0
2		3	3	0.000	0.000						
Parámetros	geotécnicos							\$			
Сара	Nombre	Tipo	Cota inferior	Densidad natural	Densidad saturada	Ángulo de rozamiento	Cohesión	Presión de nundimiento	Añadir cap	a	
1		Cohesivo	(m)	(t/m³) 0.00	(t/m³) 0.00	(°) 0.0	(t/m²) 0.00	(t/m ²) 0.00	Eliminar cap	a	
									Ayuda	Aplicar	Aceptar Cancela

Figura 3.2-6: Definición de los parámetros de contacto hormigón-terreno.

Los parámetros correspondientes a la base de la zapata se utilizan para el cálculo del estado límite de deslizamiento:

- Ángulo de rozamiento zapata-terreno.
- Adherencia zapata-terreno.

En el paramento vertical del muro (paramento del trasdós) se debe introducir el ángulo de rozamiento hormigón-terreno, que se utilizará en el cálculo de los empujes.

Para el ángulo de rozamiento paramento-relleno, el Código Técnico de la Edificación en su Documento Básico SE-C (Cimientos) (apartado 6.2.3) determina que, salvo justificación especial, se deberán tener en cuenta las estimaciones siguientes para dicho ángulo:

- Para empuje activo y paramento poco rugoso $\delta \le 2/3 * \phi$ (por ejemplo, en un paramento hormigonado contra el terreno).
- Para empuje activo y muro poco rugoso: $\delta \le 1/3 * \phi$ (por ejemplo, en un paramento encofrado).
- Para empuje activo y muro liso: $\delta = 0$ (caso de disponer una lámina drenante lisa).
- Para empuje pasivo: $\delta \le 1/3 * \phi$

Por su parte, la norma sísmica NCSP-07 propone a falta de información específica que:

 $\delta \le 2/3 * \phi$ para el empuje activo. $\delta = 0$ para el empuje pasivo.

3.3 Orden Materiales

Mediante la orden *Materiales* se accede a la ventana de definición de los materiales de los diferentes elementos estructurales, donde se debe seleccionar el acero de las armaduras pasivas, los hormigones estructurales correspondientes a la zapata y al alzado, así como el hormigón de la capa de nivelación y limpieza; este último solo se utiliza a efectos de generar los planos de geometría y la medición. Además se debe definir el diámetro máximo del árido para cada uno de los hormigones, y, en caso de optar por las normativas españolas, también su consistencia (según se define en la Instrucción EHE-08). En las figuras 3.3-1, 3.3-2 y 3.3-3 se muestran las ventanas correspondientes a las normas españolas, europeas y americanas.

lateria	ales		_	-			x			
Arm	adura pasiva									
[Ma	aterial							
	Zapata y alzado	B-500-S	\blacksquare	Editar)						
Horn	nigones estructurales									
[Diámetro máximo					
		Ma	aterial		del árido	Consistenc	ia			
	7	HA DE		Editor	(mm) 20	Diáctico				
	Zapata	HA-20		Editor	20	Plástica	-			
	Aizauo	18-50	T	Luitai	20	Fidauca				
Horn	nigones no estructural	es								
Material										
	Capa rivelacion			Carcar						
	Editar biblioteca	A	/uda	Aplica	r Aceptar	Canc	elar			

Figura 3.3-1: Ventana de definición de los materiales para las normas españolas.

Materi	iales					— ×				
Arm	nadura pasiva									
	Zapata y alzado	B-500-S	Material	Editar)						
Hor	migones estructurales									
			Material		Diámetro máximo del árido					
	▲				(mm)					
	Zapata	C25/30		Editar	20					
	Alzado	C30/37	_	Editar	20					
Hor	Hormigones no estructurales									
	Editar biblioteca		Ayuda	Aplica	r Aceptar	Cancelar				

Figura 3.3-2: Ventana de definición de los materiales para las normas europeas.

Arm	adura pasiva										
			Material								
	Zapata y alzado	B-500-S	_	Editar							
Hor	migones estructurales										
					Diámetro máximo						
			Material		del árido						
					(mm)						
	Zapata	C25	-	Editar	20						
	Alzado	C30	_	Editar	20						
Hormigones no estructurales Material Capa pivelación C15 Editar											
	Capa nivelación	C15									

Figura 3.3-3: Ventana de definición de los materiales para las normas americanas.

Para cada elemento estructural se debe seleccionar un material de los existentes en la biblioteca con la opción del menú desplegable (ver figura 3.3-4).

Materi	ales				-	×
Arm	adura pasiva					
	Zapata y alzada	M	aterial			
Hor	migones estructurales	5-500-5				
	4	М	aterial	Diámetro del a (n	o máximo árido nm)	
	Zapata	C25	Editar		20	
	Alzado	C30 C30	Editar		20	
Horr	migones no estructural	C20 C25	E			
	Capa nivelación	C30 C35 C40	terial ↓ Ed	itar		
	Editar biblioteca	A	yuda	Aplicar	Aceptar	Cancelar

Figura 3.3-4: Ventana de definición de los materiales para las normas americanas.

Con el botón *Editar* se accede a la ventana de la biblioteca de materiales, en la que se editan todos los parámetros que definen a dicho material (en la Figura 3.3-5 se muestra la ventana correspondiente a un hormigón definido según los Eurocódigos). El usuario puede modificar los valores del material, los cuales guardados en el proyecto del muro, y los que

se adoptarán en los cálculos, sin que se modifiquen los valores de la biblioteca. Para mayor detalle consultar el Manual del Usuario correspondiente a la Biblioteca de Materiales.

finición del mater	ial	_		_	_	
Normativa :	Normas europeas - Eurocódigo EN-1992			Sistema de I	unidades	
Tipo :	Hormigón estructural				© М.К.S.	
					S.I.	
Nombre :	C30/37				Americano	
Estático						
	Parámetro		Valor	Unidades	Variación temporal	
	Resistencia a compresión 28 días	fck	30.0	MPa	Según normativa	
Parámetros	Resistencia media a compresión 28 días	fcm	38.0	MPa	Según normativa	
resistentes	Resistencia característica a la tracción 28 días	fct, k	-2.0	MPa	Según normativa	
	Resistencia media a la tracción 28 días	fct, m	-2.9	MPa	Según normativa	
	Módulo elástico longitudinal secante	Ecm	32836.6	MPa	Según normativa	
Parámetros	Módulo elástico longitudinal inicial (tangente)	Ec	34478.4	MPa	Según normativa	
Clasucos	Coeficiente de Poisson	ν	0.20			
	Grado de la parábola	n	2.000			
)iagrama parábola	Deformación de rotura a compresión simple	8c2	0.00200			
- rectanguio	Deformación de rotura en flexión	Ecu2	0.00350			
Diagrama	Coeficiente de la profundidad del bloque de compresión	λ	0.800			
rectangular	Coeficiente de intensidad del bloque de compresión	n	1.000			
	Peso específico	Y	25.0	kN/m ₃		
	Coeficiente s del tipo de cemento	S	0.250			
Otros parámetros	Coeficiente α de la naturaleza del árido	<i>c</i> ℓ arido	1.000			
	Coeficiente de dilatación térmica	α	0.00001000	°C -1		
	Endurecimiento		Clase N 룾			
σ_{c_1}					J_1	
c İ			$n(\mathbf{x}) \cdot \mathbf{f}$			
Icd	· · · · · · · · · · · · · · · · · · ·		(I(X) Led	f	cd /	
		7				
	x	/				
1/	h					
	8 / /					
ε_{c2} ε_{cu2}					f _t	
Diagrama parábola - rectángulo Diagrama rectangular					Diagrama lineal	
Calcular parámetros de acuerdo con Normativa						

Figura 3.3-5: Diálogo correspondiente a los parámetros de definición de un hormigón según los Eurocódigos.

Si el usuario desea modificar los valores del material de la biblioteca, deberá seleccionar la opción *Editar biblioteca*; de este modo se accede al diálogo general de la biblioteca, a partir del cual podrá editar, modificar o añadir cualquier material de la biblioteca.

3.4 Orden Clases de exposición

En este apartado se deben definir las clases de exposición del ambiente, que permitirán calcular los recubrimientos mínimos y las condiciones de fisuración admisible (estas opciones deben ser activadas por el usuario en las ventanas correspondientes a las órdenes *Fisuración* y *Recubrimientos*).

3.4.1 Normativa española

En el caso de la normativa española (artículo 8.2.2 de la Instrucción EHE-08) se debe definir la clase de exposición general (procesos relativos a la corrosión de las armaduras) y las clases de exposición específica (procesos de deterioro distintos de la corrosión).

Clases generales de exposición relativas a la corrosión de armaduras						
	Clase gener					
Clase	Subclase	Designa- ción	Tipo de proceso	Descripción		
No agresiva		Ι	Ninguno	Interiores de edificios, no sometidos a condensaciones.Elementos de hormigón en masa.		
Normal	Humedad alta	IIa	Corrosión de origen diferente a los cloruros.	 Interiores sometidos a humedades relativas medias altas (> 65%) o a condensaciones. Exteriores en ausencia de cloruros, y expuestos a lluvia en zonas con precipitación media anual superior a 600 mm. Elementos enterrados o sumergidos. 		
	Humedad media	Шь	Corrosión de origen diferente a los cloruros.	 Exteriores en ausencia de cloruros, sometidos a la acción del agua de lluvia, en zonas con precipitación media anual inferior a 600 mm. 		
	Aérea	IIIa	Corrosión por cloruros.	 Elementos de estructuras marinas, por encima del nivel de pleamar. Elementos exteriores de estructuras situadas en las proximidades de la línea costera (a menos de 5 km). 		
Marina	Sumergida	IIIb	Corrosión por cloruros.	 Elementos de estructuras marinas sumergidas permanentemente, por debajo del nivel marino de bajamar. 		
	En zonas de carrera de mareas y en zonas de salpicaduras		Corrosión por cloruros.	 Elementos de estructuras marinas situadas en la zona de salpicaduras o en zonas de carrera de mareas. 		
Con cloruros de origen diferente del medio marino.		IV	Corrosión por cloruros.	 Instalaciones no impermeabilizadas en contacto con el agua que presente un contenido elevado de cloruros, no relacionados con el ambiente marino. Superficies expuestas a sales de deshielo no impermeabilizadas. 		

 Tabla 3.4.1-1: Clases de exposición general según la Instrucción EHE-08.

Clases específicas de exposición relativas a otros procesos distintos de la corrosión							
	Clase e	specífica de exposi	ción	Descrinción			
Clase	Subclase	Designación	Tipo de proceso	Descripcion			
	Débil	Qa	Ataque químico	 Elementos situados en ambientes con contenidos de sustancias químicas capaces de provocar la alteración de hormigón con velocidad lenta (ver tabla 3.4.1-3). 			
Química agresiva	Media	Qb	Ataque químico	 Elementos en contacto con agua de mar. Elementos situados en ambientes con contenidos de sustancias químicas capaces de provocar la alteración del hormigón con velocidad media (ver tabla 3.4.1-3) 			
	Fuerte	Qc	Ataque químico	 Elementos situados en ambientes con contenidos de sustancias químicas capaces de provocar la alteración del hormigón con velocidad rápida (ver tabla 3.4.1-3) 			
Con heladas	Sin sales fundentes	Н	Ataque hielo-deshielo	 Elementos situados en contacto frecuente con el agua, o zonas con humedad relativa media ambiental en invierno superior al 75%, y que tengan una probabilidad anual superior al 50% de alcanzar al menos una vez temperaturas por debajo de -5°C. 			
	Con sales fundentes	F	Ataque por sales fundentes	 Elementos destinados al tráfico de vehículos o peatones en zonas con más de 5 nevadas anuales o con valor medio de la temperatura mínima en los meses de invierno inferior a 0°C. 			
Erosión		Е	Abrasión, cavitación	 Elementos sometidos a desgaste superficial. Elementos de estructuras hidráulicas en los que la cota piezométrica pueda descender por debajo de la presión de vapor del agua. 			

Tabla 3.4.1-2: Clases de exposición específica según la Instrucción EHE-08.

En la Tabla 3.4.1-3 se especifica la clasificación del ataque química según el nivel de agresividad.

Tine de		Т	ipo de exposició	on 🛛
Tipo de	Donémotros	Qa	Qb	Qc
agresivo	r ar ametr os	Ataque débil	Ataque medio	Ataque fuerte
	Valor del pH, según UNE 83.952.	6,5-5,5	5,5-4,5	< 4,5
	CO_2 agresivo (mg CO_2/l), según UNE-EN 13.577.	15-40	40-100	> 100
A (31) 0	Ión Amonio (mg NH_4^+/l), según UNE 83.954.	15-30	30-60	> 60
Agua	Ión Magnesio (mg Mg ²⁺ /l), según UNE 83.955.	300-1.000	1.000-3.000	> 3.000
	Ión Sulfato (mg SO ²⁻ 4/l), según UNE 83.956.	200-600	600-3.000	> 3.000
	Residuo Seco (mg/l), según UNE 83.957.	75-150	50-75	< 50
Suelo	Grado de acidez Bauman-Gully (ml/kg), según UNE 83.962.	> 200	(*)	(*)
Suelo	Ión Sulfato (mg SO^{2-}_{4}/kg de suelo seco), según UNE 83.963.	2.000-3.000	3.000-12.000	> 12.000

(*) Estas condiciones no se dan en la práctica

Tabla 3.4.1-3:	Clasificación	de la agresiv	vidad química	según la	Instrucción	EHE-08
----------------	---------------	---------------	---------------	----------	-------------	--------

En base a los criterios establecidos en la normativa el usuario debe seleccionar en el diálogo (ver Figura 3.4.1-4) una de las clases generales de exposición y seleccionar las clases específicas que sean de aplicación a la estructura que se está calculando. Así mismo se debe especificar si el ataque químico Q (ya sea Qa, Qb o Qc) afecta a las armaduras o no (este aspecto determina la limitación del ancho de fisura) y si se produce ataque al hormigón por pH, CO2 o SO₄, lo cual interviene en la determinación del tipo de cemento a utilizar y por tanto en el recubrimiento mínimo de las armaduras.

Si se marca la casilla el programa considera que existe la clase específica o el ataque seleccionado, y en caso de no marcarla se considera que no se da dicho ataque.

En base a los datos introducidos se podrá calcular automáticamente el recubrimiento de las armaduras y la abertura máxima de fisura (estas opciones deben ser activadas por el usuario en las ventanas correspondientes a las órdenes *Fisuración* y *Recubrimientos*).

C	lases de exposición									x
			Class of	no cífic	_		A	taque	Q	
	Elemento	Clase general	Clase especifica			A armaduras	Al hormigón		n	
			Q	н	F	E	A armaduras	PH	CO 2	SO 4
	Alzado	I	Qa 🗨							
	Zapata	IIa 👻	Ninguna 📃 💂							
							Aceptar		Cance	lar

Figura 3.4.1-4: Definición de las clases de exposición con la normativa española (EHE-08).

3.4.2 Normativa europea

El Eurocódigo EN-1992-1-1 en su artículo 4.2 establece los las clases de exposición, que se presentan en la siguiente Tabla 3.4.2-1.

Clase de exposición relativas a las condiciones del ambiente según EN 206-1						
Designación	Descripción del ambiente	Ejemplos				
1 Sin rie	sgo de corrosión					
X0	 Hormigón en masa: Cualquier ambiente excepto situaciones de hielo/deshielo, abrasión o ataque químico. Hormigón armado: Ambiente muy seco. 	Hormigón en interior de edificios con muy baja humedad.				
2 Corrosión in	ducida por carbonatación	•				
XC1	Seco o permanente mojado (sumergido).	 Hormigón en interior de edificios con baja humedad. Hormigón permanentemente sumergido en el agua 				
XC2	Mojado, raramente seco.	Superficies de hormigón en contacto con el agua durante largos periodos.Algunas cimentaciones.				
XC3	Moderadamente húmedo.	 Hormigón en interior de edificios con humedad baja o moderada. Hormigón en el exterior protegido de la lluvia. 				
XC4	Situaciones cíclicas de seco y mojado.	Superficies de hormigón en contacto con el agua no incluidas en XC2.				
3 Corrosión in	ducida por cloruros					
XD1	Moderadamente húmedo.	Superficies de hormigón sometidas a ambientes aéreos con cloruros.				
XD2	Mojado, raramente seco.	 Piscinas. Hormigón en contacto con aguas industriales que contengan cloruros. 				
XD3	Situaciones cíclicas de seco y mojado.	 Elementos de puentes en contacto con salpicaduras que contengan cloruros. Pavimentos. Losas de aparcamientos. 				
4 Corrosión in	ducida por cloruros procedentes de agua mar	ina				
XS1	Expuesto a ambiente marino pero sin contacto directo con agua marina.	- Estructuras situada en la costa.				
XS2	Permanentemente sumergido.	- Partes de estructuras marinas.				
XS3	Zona de mareas y salpicaduras.	- Partes de estructuras marinas.				
5 Ataque por h	ielo-deshielo					
XF1	Zonas de saturación moderada sin sales fundentes.	- Superficies verticales de hormigón expuestas a la lluvia y a las heladas.				
XF2	Zonas de saturación moderada con sales fundentes.	 Superficies verticales de hormigón de estructuras de carretera expuestas a heladas y a sales de deshielo. 				
XF3	Zonas muy saturadas sin sales fundentes.	- Superficies horizontales de hormigón expuestas a la lluvia y a las heladas.				
XF4	Zonas muy saturadas con sales fundentes.	 Carreteras y tableros de puente expuestos a agentes de deshielo. Superficies de hormigón expuestas directamente a salpicaduras que contengan agentes de deshielo y heladas. Estructuras en zonas con salpicaduras de agua marina expuestas a heladas. 				

(Clase de exposición relativas a las condiciones del ambiente según EN 206-1								
Designación	Descripción del ambiente	Ejemplos							
6 Ataque quím	6 Ataque químico								
XA1									
	la Tabla 2 del EN-206-1								
XA2	Ambiente de moderada agresividad química								
	según la Tabla 2 del EN-206-1								
XA3	Ambiente de alta agresividad química según								
	la Tabla 2 del EN-206-1								

 Tabla 3.4.2-1: Clases de exposición según los Eurocódigos.

En base a los criterios establecidos en la normativa el usuario debe seleccionar en el diálogo (ver Figura 3.4.2-2) una de las clases de exposición para cada elemento estructural. En base a la clase de exposición seleccionada se podrá calcular automáticamente el recubrimiento de las armaduras y la abertura máxima de fisura (estas opciones deben ser activadas por el usuario en las ventanas correspondientes a las órdenes *Fisuración* y *Recubrimientos*).

C	lases de exposición			
	Elemento	Clase		
	Alzado	XC1	-	
	Zapata	XD1	Ŧ	
				Aceptar Cancelar

Figura 3.4.2-2: Definición de las clases de exposición según la normativa europea (Eurocódigos).

3.4.3 Normativa americana

En el caso de la normativa americana se ha adoptado la clasificación de las clases de exposición que figuran en la ACI 318 (apartado 4.2.1), al no existir una definición explícita en la AASHTO. En la tabla 3.4.3-1 se presenta dicha clasificación.

Categorías y clases de exposición según ACI 318 (Tabla 4.2.1)						
Categoría	Severidad	Clase	Cond	lición		
F : Hielo-deshielo	No aplicable	FO	Hormigón no expuesto a	ciclos de hielo-deshielo.		
	Moderada	F1	Hormigón expuesto a ciclos de hielo y deshiel			
			con exposición ocasional	a la humedad.		
	Severa	F2	Hormigón expuesto a ci	clos de hielo-deshielo en		
			contacto continuo con la	humedad.		
	Muy severa	F3	Hormigón expuesto a cic	los de hielo-deshielo que		
			estará en contacto cont	inuo con la humedad y		
			expuesto a productos quí	micos descongelantes.		
S : Sulfatos			Sulfatos solubles en	Sulfatos (SO) disuelto		
			agua (SO ₄) en el suelo	en agua (nnm)		
		r	(% en peso)	ch uguu (ppm)		
	No aplicable	S0	SO ₄ < 0,10	SO ₄ < 150		
	Moderada	S1	$0,10 \le SO_4 \le 0,20$	$150 \leq SO_4 \leq 1.500$ agua		
				marina		
	Severa	S2	$0,20 \le SO_4 \le 2,00$	$1.500 \le SO_4 \le 10.000$		
	Muy severa	S3	SO ₄ > 2,00	$SO_4 > 10.000$		
P : Requerimiento de	No aplicable	PO	En contacto con el agua	donde no se requiere baja		
baja permeabilidad.			permeabilidad.			
	Requerida	P1	En contacto con el agua	a donde se requiera baja		
			permeabilidad.			
C : Protección de	No aplicable	CO	Hormigón seco o protegio	do contra la humedad.		
corrosión de las	Moderada	C1	Hormigón expuesto a la	humedad y a una fuente		
armaduras.			externa de cloruros.			
	Severa	C2	Hormigón expuesto a la	humedad y a una fuente		
			externa de cloruros pro	ovenientes de productos		
			químicos descongelantes	, sal, agua salobre, agua		
			de mar o salpicaduras del	mismo origen.		

 Tabla 3.4.3-1: Clases de exposición según ACI 318.

A partir de esta clasificación, *CivilCAD3000* clasifica la agresividad en Ninguna, Moderada, Severa y Muy severa, que permite obtener los factores de exposición para el cálculo a fisuración según se define en el apartado 5.7.3.4 de la AASHTO.

Además el usuario debe definir las situaciones de agresividad a las que puede estar sometido el hormigón. El usuario debe marcar para cada elemento estructural las situaciones que afectan a cada una de ellas. Estas situaciones son:

- Exposición directa a agua marina.
- Hormigonado contra el suelo.
- Ubicación costera.
- Exposición a sales anticongelantes.
- Tráfico con neumáticos de clavos o cadenas.

En la Figura 3.4.3-1 se muestra el diálogo que permite definir las clases y situaciones de exposición.

Si se marca la casilla el programa considera que la situación afecta al elemento estructural, y en caso de no marcarla se considera que no le afecta.

La definición de estas situaciones permitirá calcular los recubrimientos mínimos de las armaduras según se define en el apartado 5.12.3 de la AASHTO.

En base a los datos introducidos se podrá calcular automáticamente el recubrimiento de las armaduras y los factores de exposición (estas opciones deben ser activadas por el usuario en las ventanas correspondientes a las órdenes *Fisuración* y *Recubrimientos*).

0	Clases de exposición									— X —
	Clases de exposición Clases de exposición Clases de exposición Categoría y dase de exposición Categoría y dase de exposición F S P C Exposición directa a agua marina Alzado F0 S2 P0 C1 P C1 P C2 V C1 C Categoría y dase de exposición Costera Coste									
Н	Elemento	F	S	Р	С	Exposición	Hormigonado	Ubicación	Exposición a	Tráfico con
	A	Hielo / deshielo	Sulfatos	Permeabilidad	Corrosión	directa a agua marina	contra el suelo	costera	sales anticongelantes	neumáticos con clavos o cadenas
	Alzado	F0 💌	S2 👻	P0 🖵	C1 🖵		v	•		
	Zapata	F2 💌	S0 👻	P1 💌	C2 👻					
									Acepta	Cancelar

Figura 3.4.3-1: Definición de las clases de exposición con la normativa americana (AASHTO).

3.5 Orden Fisuración

Mediante la orden *Fisuración*, *CivilCAD3000* permite definir los niveles de fisuración admisible para cada uno de los elementos estructurales del muro (zapata y alzado). Los valores a introducir dependen de la normativa con la que se esté calculando la estructura, los cuales se definen en los siguientes subapartados.

3.5.1 Normativa española

En la normativa española (artículo 5.1.1.2 de la EHE-08), el nivel de fisuración admisible se define a partir de la abertura de fisura máxima admisible, que depende de la clase de exposición específica y general (ver Tabla 3.5.1-1).

Class de expeciaión	W _{max} (mm)			
Clase de exposición	Hormigón armado	Hormigón pretensado		
	Combinación casi permanente	Combinación frecuente		
Ι	0,4	0,2		
IIa, IIb, H	0,3	0,2		
IIIa, IIIb, IV, F, Qa ⁽²⁾	0,2	Dagaammaaián		
IIIc, $Qb^{(2)}$, $Qc^{(2)}$	0,1	Descompresion		

(2) La limitación relativa a la clase Q solo es de aplicación en el caso de que el ataque químico pueda afectar a la armadura.

Tabla 3.5.1-1: Anchura de fisura admisible en función de las clases de exposición.

Para el cálculo de la fisuración se adopta la combinación casi permanente.

Con la orden *Fisuración*, el usuario puede entrar el ancho de fisura máximo admisible para la zapata y el alzado (ver Figura 3.5.1-1).

Cálculo a fisuración	X
Ancho de fisura máximo	
En el alzado: En la zapata:	0 mm 0 mm
	Calcular
Ayuda Aplicar	Aceptar Cancelar

Figura 3.5.1-1: Ventana de entrada de los anchos de fisura admisibles.

CivilCAD3000 permite calcular de forma automática los anchos de fisura admisibles a partir de la clase de exposición definida en el diálogo *Clases de exposición*. Al seleccionar la opción *Calcular* (ver figura 3.5.1-2), el programa calculará los anchos de fisura admisibles para cada elemento estructural, para lo cual debe haberse definido previamente las clases de exposición.

Cálculo a fisuración	— X —
Ancho de fisura máximo	
En el alzado: En la zapata:	0 mm 0 mm Calcular
Ayuda Aplicar	Aceptar Cancelar

Figura 3.5.1-2: Botón *Calcular* para el cálculo automático de las anchuras de fisura admisibles.

Si con posterioridad al cálculo de los anchos de fisura se modifican las clases de exposición, el usuario deberá volver a calcular los anchos de fisura.

3.5.2 Normativa europea

En los Eurocódigos (apartado 7.3.1 del Eurocódigo EN-1992) el nivel de fisuración admisible se define a partir de la abertura de fisura máxima admisible, que depende de la clase de exposición (ver Tabla 3.5.2-1).

	W _{max}	(mm)
Clase de exposición	Hormigón armado y hormigón pretensado con tendones no adherentes.	Hormigón pretensado con tendones adherentes.
	Combinación casi permanente	Combinación frecuente
X0, XC1	0,4	0,2
XC2, XC3, XC4	0,3	0,2
XD1, XD2, XS1, XS2, XS3	0.3	Descompresión

 (1) Para X0 y XC1, la abertura de fisura no tiene influencia sobre la durabilidad, y el límite dado garantiza una apariencia aceptable; en ausencia del requerimiento de apariencia se pueden admitir aberturas superiores.
 (2) Para estas clases de exposición, adicionalmente, se debe verificar la descompresión bajo la combinación de cargas casi permanente.

Tabla 3.5.2-1: Anchura de fisura admisible en función de las clases de exposición.

Para el cálculo de la fisuración en el alzado y en la zapata, se adopta la combinación casi permanente.

Con la orden *Fisuración*, el usuario puede entrar el ancho de fisura máximo admisible para los distintos elementos estructurales (alzado y zapata) (ver Figura 3.5.2-1).

C	álculo a fisuración
Γ	Ancho de fisura máximo
l	En el alzado: 0 mm En la zapata: 0 mm Calcular
	Ayuda Aplicar Aceptar Cancelar

Figura 3.5.2-1: Ventana de entrada de los anchos de fisura admisibles.

CivilCAD3000 permite calcular de forma automática los anchos de fisura admisibles a partir de la clase de exposición definida en el diálogo *Clases de exposición*. Al seleccionar la opción *Calcular* (ver figura 3.5.2-2), el programa obtendrá los anchos de fisura admisibles para cada elemento estructural, para lo cual debe haberse definido previamente las clases de exposición.

Cálculo a fisuración		×
Ancho de fisura máximo		
En el alzado: En la zapata:	0	mm mm
		Calcular
Ayuda Aplicar	Acepta	ar Cancelar

Figura 3.5.2-2: Botón *Calcular* para el cálculo automático de las anchuras de fisura admisibles.

Si con posterioridad al cálculo de los anchos de fisura se modifican las clases de exposición, el usuario deberá volver a calcular los anchos de fisura.

3.5.3 Normativa americana

En la normativa AASHTO (artículo 5.7.3.4 de la AASHTO 2010), la verificación del estado límite de fisuración se realiza comprobando que la separación entre las barras de la armadura de tracción 's' es menor que una separación máxima admisible que se obtiene a partir de la siguiente expresión:

$$s \le s_{adm} = \frac{700 \cdot \gamma_e}{\beta_s \cdot f_{ss}} - 2 \cdot d_c \quad (Ex. \ 3.5.3 - 1)$$

, siendo

s Separación real entre barras (in).

s _{adm} Separación máxima admisible entre barras (in).

d_c Distancia de la fibra de hormigón más traccionada al centro de la barra más traccionada (in). Si solo hay una fila coincide con el recubrimiento mecánico.

 γ_{e} Factor de exposición, que depende de la clase de exposición (adimensional). f_{ss} Tensión en la armadura traccionada correspondiente a estado límite de servicio (ksi).

 β_s Factor β , que se obtiene de la expresión siguiente:

$$\beta_s = 1 + \frac{d_c}{0.7 \cdot (h - d_c)}$$
 (Ex. 3.5.3 - 2)

h Canto de la sección

En el diálogo correspondiente a la Orden Fisuración (ver figura 3.5.3-1), el usuario debe introducir el valor del Factor de exposición a considerar en los cálculos.

Cálculo a fisuración	
Factor de exposición	(γ'e)
En el alzado:	0.75
En la zapata:	1.00
	Calcular
Ayuda Aplicar	Aceptar Cancelar

Figura 3.5.3-1: Ventana de entrada del Factor de exposición.

De acuerdo con la AASHTO, el factor de exposición toma los siguientes valores:

$\gamma_{\rm e} = 1,00$	para la clase de exposición Moderada o Normal (Clase 1).
$\gamma_{\rm e} = 0,75$	para la clase de exposición Severa (Clase 2).

El factor de exposición está directamente relacionado con la a abertura de fisura. La Clase de exposición Moderada (*Class1*) se corresponde aproximadamente con una abertura de fisura admisible de 0,017 in (0,43 mm). Un factor de exposición de 0,5 se corresponde aproximadamente con una abertura de fisura de 0,0085 in (0,21 mm).

El cálculo a fisuración se realiza para la combinación correspondiente al estado límite de servicio I.

CivilCAD3000 permite calcular de forma automática los factores de exposición a partir de la clase de exposición definida en el diálogo *Clases de exposición*. Al seleccionar la opción *Calcular* (ver figura 3.5.3-2), el programa calculará los factores de exposición para cada elemento estructural, para lo cual debe haberse definido previamente las clases de exposición.

Cálculo a fisuración		
Factor de exposición	(%e)	
En el alzado:	0.75	
En la zapata:	1.00	
	Cal	cular
Ayuda Aplicar	Aceptar	Cancelar

Figura 3.5.3-2: Botón Calcular para el cálculo automático de los factores de exposición.

Si con posterioridad al cálculo de los factores de exposición se modifican las clases de exposición, el usuario deberá volver a calcular dichos factores de exposición.

3.6 Orden Acciones

Con la opción *Acciones* se despliegan en el menú principal las órdenes correspondientes a las acciones permanentes (orden *Permanentes*), acciones variables (orden *Variables*) y las acciones accidentales (orden *Accidentales*), que permiten introducir en el proyecto del muro las acciones permanentes, las variables y las accidentales respectivamente.

I Sin Nombre		- 0 X
Muro Proyecto Entrada Geometría Terreno Materiales Clases de exposición Fisuración Acciones Variables Accidentales Coeficientes de mayoración de acce Factores de resistencia Armadura Configuración Armálisis Salida	iones	
, ` Varificación	Perultado	
	Nesaltado	
Normas americanas AASHTO 2010		
Unidades: M.K.S.	ijar / no fijar croquis	0.000

Figura 3.6-1: Orden Acciones del menú principal.

3.6.1 Orden Acciones Permanentes

Esta orden permite introducir las acciones de carácter permanente, es decir, que actúan siempre sobre el muro. Las acciones permanentes consideradas son las siguientes:

- Peso propio del muro.
- Peso de las tierras.
- Empuje activo del terreno del trasdós.
- Empuje pasivo del terreno situado delante del muro (opcional).

- Carga uniforme en la superficie del terreno del trasdós.
- Acciones actuando en coronación de muro.
- Carga en faja en el trasdós del muro actuando en cualquier cota que permite considerar la acción de zapatas de cimentación situadas en el trasdós del muro.

CivilCAD3000 obtiene las cargas del peso propio del muro de forma automática a partir de la geometría y del peso específico del hormigón de cada elemento estructural. El peso específico del hormigón puede modificarse editando el material y modificando el valor correspondiente al peso específico en la orden *Materiales* (ver Figura 3.6.1-1).

Diagrama paráb	ola - rectángulo Diagrama recta	ngular			Diagrama lineal	
σ _c , f _{ed}	h x h x	7	$\eta(\mathbf{x}) \cdot \mathbf{f}_{cd}$	f,	$E_{cn} = f_t$	
Otros parámetros	Coeficiente ∞ de la naturaleza del árido Coeficiente de dilatación térmica Endurecimiento	Cl arido Cl	1.000 0.00001000 Clase N 💌	°C -1		
	Peso específico Coeficiente e del tino de cemento	γ	25.0	kN/m³		
Diagrama rectangular	Coeficiente de la profundidad del bloque de compresión	λ	0.800		_	
- rectángulo	Deformación de rotura en flexión	Ecu2	0.00350			
Diagrama parábola	Deformación de rotura a compresión simple		0,00200			
	Coeficiente de Poisson Grado de la parábola	V	0.20			
Parametros elásticos	Módulo elástico longitudinal inicial (tangente)	Еo	34478.4	MPa (Según normativa	
	Módulo elástico longitudinal secante	Ecm	32836.6	MPa (Según normativa	
	Resistencia media a la tracción 28 días	f ct, m	-2.9	MPa (Según normativa	
Parametros resistentes	Resistencia característica a la tracción 28 días	fct k	-2.0	MPa (Segun normativa	
0	Resistencia a compresión 28 días Resistencia media a compresión 28 días	T ck	30.0	MPa (Según normativa	
4	Parámetro	1.	Valor	Unidades	Variación temporal	
Estatico						
Falling	0.00107			Americano		
Nombro I	C20/27				S.I.	
Tipo :	Hormigón estructural					
	Normas europeas - Eurocódigo EN-1992				inidades	

Figura 3.6.1-1: Ventana de edición de los parámetros del hormigón.

Las acciones del peso de tierras y de los empujes activos y pasivos se calculan de forma automática a partir de los parámetros geotécnicos definidos en la orden *Terreno* (densidad, rozamiento y cohesión).

El resto de acciones permanentes se calculan a partir de los datos que deben introducirse en el diálogo que aparece al seleccionar la orden *Acciones/Permanentes*, el cual se muestra en la Figura 3.6.1-2.

Figura 3.6.1-2: Definición de las acciones permanentes.

Concretamente se deben introducir los siguientes parámetros:

Sobrecarga en trasdós.

CivilCAD3000 permite introducir una sobrecarga uniforme permanente actuando en la superficie del terreno del trasdós. Según sea la geometría del talud del trasdós se deben introducir los siguientes valores.

- a) *Superficie del trasdós horizontal*: Se debe introducir el valor de la carga uniforme actuando en la superficie del trasdós (ver Figura 3.6.1-2). Esta carga se considera actuando en la superficie del talud en una zona de extensión infinita.
- b) *Superficie del trasdós con talud infinito*: Se debe introducir el valor de la carga uniforme actuando en la superficie del trasdós (ver Figura 3.6.1-3). Esta carga se considera actuando en la superficie del talud en una zona de extensión infinita.

Figura 3.6.1-3: Definición de las acciones permanentes con talud inclinado.

c) *Superficie del trasdós con un tramo inclinado y otro horizontal*: En este caso se debe introducir el valor de la sobrecarga actuando en el talud (carga uniforme Q₁) y el valor de la sobrecarga actuando en el tramo horizontal (carga uniforme Q₂). La carga Q₂ se considera actuando en la superficie del talud en una zona de extensión infinita.

Figura 3.6.1-4: Definición de las acciones permanentes con talud mixto.

Acción en coronación de muro

CivilCAD3000 permite considerar una carga permanente lineal en coronación del muro definida por una fuerza horizontal (H), un fuerza vertical (V) y un momento (M) (ver Figura 3.6.1-5).

La fuerza H corresponde a una fuerza horizontal lineal actuando en coronación del muro; se considera positiva si tiende a provocar el vuelco del muro. El valor a introducir corresponde a la fuerza por unidad de longitud de muro (medida en planta).

La fuerza V corresponde a una fuerza vertical lineal actuando en coronación del muro; se considera positiva si provoca compresión en el alzado del muro. El valor a introducir corresponde a la fuerza por unidad de longitud de muro (medida en planta).

El momento M corresponde a un momento lineal actuando en coronación del muro; se considera positivo si tiende a provocar el vuelco del muro. El valor a introducir corresponde al momento por unidad de longitud de muro (medida en planta).

Figura 3.6.1-5: Definición de las acciones en coronación de muro.

<u>Carga en faja</u>

La carga en faja corresponde a una carga por unidad de superficie que actúa a una determinada cota en el trasdós del muro y en una determinada anchura. Se define a partir de la cota en la que actúa (Z₃), la distancia al paramento de referencia (L₁) (ver apartado 3.1.2), la anchura en la que actúa la carga (L₂) y el valor de la carga por unidad de superficie (Q₃). La carga en faja se considera actuando en un tramo infinito en la dirección longitudinal del muro.

Acciones permanentes	100		×
$\begin{array}{c} M \\ V \\ Q_1 \\ Q_2 \\ H \\ Q_3 \\ Z_3 \\$	Sobrecarga en trasdós Sobrecarga uniforme en el talud, Q ₁ : Sobrecraga uniforme en el terreno horizontal, Q ₂ Acción en coronación del muro Carga vertical lineal en coronación, V: Carga horizontal lineal en coronación, H: Momento lineal en coronación, M:	0 0 0 0 0	t/m 2 t/m 2 t/m t/m t/m
	Carga en faja Distancia de la carga al paramento exterior, L ₁ : Ancho de la carga, L ₂ : Cota de aplicación de la carga, Z ₃ : Sobrecraga uniforme, Q ₃ :	0 0 0 0	m m t/m²
	Ayuda Aplicar Ac	eptar	Cancelar

Figura 3.6.1-6: Definición de la carga en faja.

3.6.2 Orden Acciones Variables

La orden *Acciones/Variables* permite definir las cargas variables que actúan sobre el muro. Concretamente, el programa considera las siguientes acciones variables:

- Tráfico.
- Viento.
- Nivel freático.

Acciones variables		
	Acción del tráfico	
	Sobrecarga en trasdós	
H Zwr	Sobrecraga uniforme en el trasdós, Q ₁ :	0 t/m²
	Acción en coronación del muro	
Zur	Carga vertical lineal en coronación, V:	0 t/m
- WD	Carga horizontal lineal en coronación, H:	0 t/m
	Momento lineal en coronación, M:	0 mt/m
	Acción del viento	
Acción del agua	Carga vertical lineal en coronación, V :	0 t/m
Activar el nivel freático	Carga horizontal lineal en coronación, H :	6 t/m
Cota del nivel freático en el trasdós, z w t: 0 m	Momento lineal en coronación, M :	0 mt/m
Cota del nivel freático delante del muro, z w d: 0 m		
1	Ayuda Aplicar	Aceptar Cancelar

Figura 3.6.2-1: Ventana correspondiente a las acciones variables.

Acción del tráfico

La acción del tráfico está compuesta por una sobrecarga uniforme en el trasdós del muro y una acción lineal en coronación del mismo.

Sobrecarga uniforme de tráfico en trasdós:

CivilCAD3000 permite introducir una sobrecarga uniforme actuando en la superficie del terreno del trasdós. Según sea la geometría del talud del trasdós se deben introducir los valores siguientes:

- a) *Superficie del trasdós horizontal*: Se debe introducir el valor de la carga uniforme Q₁ actuando en la superficie del trasdós (ver Figura 3.6.2-1). Esta carga se considera actuando en la superficie del talud en una zona de extensión infinita.
- b) *Superficie del trasdós con talud infinito*: Se debe introducir el valor de la carga uniforme actuando en la superficie del trasdós (ver Figura 3.6.2-2). Esta carga se considera actuando en la superficie del talud en una zona de extensión infinita.

c) *Superficie del trasdós con un tramo inclinado y otro horizontal:* En este caso se debe introducir el valor de la sobrecarga actuando en el talud (carga uniforme Q₁) y el valor de la sobrecarga actuando en el tramo horizontal (carga uniforme Q₂). La carga Q₂ se considera infinita.

Figura 3.6.2-3: Definición de las acciones variables con talud mixto.

Acción de tráfico en coronación de muro.

CivilCAD3000 permite considerar una carga lineal en coronación del muro definida por una fuerza horizontal (H), un fuerza vertical (V) y un momento (M) (ver figura 3.6.2-4).

La fuerza H corresponde a una fuerza horizontal lineal actuando en coronación del muro; se considera positiva si tiende a provocar el vuelco del muro. El valor a introducir corresponde a la fuerza por unidad de longitud de muro (medida en planta).

La fuerza V corresponde a una fuerza vertical lineal actuando en coronación del muro; se considera positiva si provoca compresión en el alzado del muro. El valor a introducir corresponde a la fuerza por unidad de longitud de muro (medida en planta).

El momento M corresponde a un momento lineal actuando en coronación del muro; se considera positivo si tiende a provocar el vuelco del muro. El valor a introducir corresponde al momento por unidad de longitud de muro (medida en planta).

Figura 3.6.2-4: Definición de las acciones en coronación de muro.

Acción del viento

CivilCAD3000 permite considerar la acción del viento actuando en coronación del muro mediante una carga lineal definida por una fuerza horizontal (H), una fuerza vertical (V) y un momento (M) (ver figura 3.6.2-5).

La fuerza H corresponde a una fuerza horizontal lineal actuando en coronación del muro; se considera positiva si tiende a provocar el vuelco del muro. El valor a introducir corresponde a la fuerza por unidad de longitud de muro (medida en planta).

La fuerza V corresponde a una fuerza vertical lineal actuando en coronación del muro; se considera positiva si provoca compresión en el alzado del muro. El valor a introducir corresponde a la fuerza por unidad de longitud de muro (medida en planta).

El momento M corresponde a un momento lineal actuando en coronación del muro; se considera positivo si tiende a provocar el vuelco del muro. El valor a introducir corresponde al momento por unidad de longitud de muro (medida en planta).

Figura 3.6.2-5: Definición de la acción del viento según la normativa española y Eurocódigos.

En el caso de la normativa americana AASHTO, se debe introducir adicionalmente la velocidad del viento (ver figura 3.6.2.6).

Acciones variables			×
M	Acción del tráfico Sobrecarga en trasdós		
	Sobrecraga uniforme en el trasdós, Q ₁ :	0.3	t/m²
	, Acción en coronación del muro		
Zun	Carga vertical lineal en coronación, V:	3	t/m
	Carga horizontal lineal en coronación, H:	2	t/m
	Momento lineal en coronación, M:	1	mt/m
	Acción del viento		
Acción del agua	Carga vertical lineal en coronación, V :	1	t/m
Activar el nivel freático	Carga horizontal lineal en coronación, H :	2	t/m
Cota del nivel freático en el trasdós, z wt: 105 m	Momento lineal en coronación M	3	mt/m
Cota del nivel freático delante del muro, z w d: 100.5 m	Velocidad del viento :	10	km/h
	Ayuda Aplicar	Aceptar	Cancelar

Figura 3.6.2-6: Definición de la acción del viento con la normativa americana (AASHTO)

La velocidad del viento interviene en la selección del estado límite de resistencia a considerar. Si la velocidad es inferior a 55 mph (90 km/h), se adoptará la combinación

correspondiente al estado límite de resistencia V, y en caso contrario la correspondiente al estado límite de resistencia III.

Acción del agua (nivel freático)

La acción del agua se define a partir de las cotas del nivel freático en el trasdós del muro (Z_{WT}) y delante del mismo (Z_{WD}). *CivilCAD3000* considera una distribución hidrostática de presiones en el trasdós del muro (cota piezométrica Z_{WT}) y una presión hidrostática de presiones delante del muro (cota piezométrica Z_{WD}).

En la base de la zapata se considera una distribución lineal de la presión hidrostática.

Para que *CivilCAD3000* considere la acción del nivel freático debe activarse la opción *Activar el nivel freático*.

Acciones variables		×
	Acción del tráfico Sobrecarga en trasdós Sobrecraga uniforme en el talud, Q ₁ : Sobrecraga uniforme en el terreno horizontal, Q ₂ : Acción en coronación del muro Carga vertical lineal en coronación, V: Carga horizontal lineal en coronación, H: Momento lineal en coronación, M:	0 t/m 2 0 t/m 2 0 t/m 2 0 t/m 2 0 t/m 2
Acción del agua Activar el nivel freático Cota del nivel freático en el trasdós, z wt: Cota del nivel freático delante del muro, z wd: O m	Carga vertical lineal en coronación, V : Carga horizontal lineal en coronación, H : Momento lineal en coronación, M :	0 t/m 6 t/m 0 mt/m
	Ayuda Aplicar Ac	eptar Cancelar

Figura 3.6.2-7: Definición de la acción del agua.

El NF puede situarse por encima de la superficie del terreno, tanto en el trasdós como en el trasdós. Debe no obstante situarse por debajo de la coronación del muro y por encima de la cara inferior de la zapata.

3.6.3 Orden Acciones Accidentales

Con la opción *Acciones/Accidentales* se accede a la ventana que se muestra en la figura 3.6.3-1 en la que se define la acción sísmica y la acción de impacto de vehículo en coronación de muro.

Acciones accidentales				×
Acción sísmica				
Aceleración símica, a _c :	이	m/s 2		
Impacto de vehículos				
Fuerza vertical, V:	0	kN	M HA	
Fuerza horizontal, H:	0	kN		
Momento, M :	0	kNm		
Anchura de actuación, A:	0	m	L)	
Ángulo de reparto, θ :	0	•		
		Ayuda	Aplicar Aceptar Can	celar

Figura 3.6.3-1: Ventana de definición de las acciones accidentales.

Acción sísmica

La acción sísmica se define a partir de la aceleración sísmica horizontal de cálculo (a _c).

A partir de la aceleración *CivilCAD3000* calcula los coeficientes sísmicos horizontal (k_h) y vertical (k_v) y el ángulo de gravedad aparente θ , a partir de los cuales obtiene las fuerzas sísmicas. Concretamente se consideran las fuerzas inerciales sobre la masa del muro y las tierras situadas sobre la zarpa delantera y trasera (verticales y horizontales) y el empuje de tierras, el cual se obtiene a partir de las expresiones de *Mononobe-Okabe*.

El valor de la aceleración sísmica a introducir corresponde al definido en las distintas normativas, según se expone a continuación:

Normativa española (Norma sismorresistente NCSP-07):

La aceleración sísmica horizontal de cálculo según se define en el apartado 3.4 de la normativa NCSP-07 (Norma de construcción sismorresistente: Puentes). Alternativamente puede consultarse el Manual Técnico Geotécnico.

Normativa europea (Eurocódigos):

La aceleración sísmica a $_{\rm c}$ que se debe introducir corresponde al producto de la aceleración sísmica de diseño para un suelo tipo A (a $_{\rm g}$) por el parámetro del suelo S.

$$a_c = a_g \cdot S \tag{Ex. 3.6.3-1}$$

A g Aceleración sísmica de diseño calculada como:

$$a_g = \gamma_I \cdot a_{gR} \qquad (Ex.3.6.3 - 2)$$

 γ_{I} Factor de importancia de la estructura

a $_{gR}$ Aceleración definida en los mapas sísmicos para un terreno tipo A asociada al periodo de retorno de cálculo. Se define en los anejos nacionales de cada país.

S Factor de suelo, cuyo valor se define en función del tipo de terreno y de la Magnitud M_s del sismo (tipo de espectro) (ver apartado 3.2.2.2 del Eurocódigo EN 1998-1:2004)

Tino do	Deserinción (ver Table 2.1	Velocidad de las	Factor d	e suelo S		
suelo	EN 1998-1:2004)	ondas de corte v _s (m/s)	Espectro Tipo 1 (Ms ≥ 5,5)	Espectro Tipo 2 (Ms < 5,5)		
А	Roca	>800	1,00	1,00		
В	Arenas muy densas, gravas o arcillas rígidas.	360 - 800	1,20	1,35		
С	Arenas densas o medias.	180 - 360	1,15	1,50		
D	Depósitos de suelos sueltos o medios sin cohesión (con o sin algunas capas cohesivas) o en los que predominan suelos cohesivos flojos a firmes.	< 180	1,35	1,80		
Е	Perfiles con una capa superficial aluvial tipo C o D y espesor entre 5 y 20 m sobre material con v _s >800 m/s	-	1,40	1,60		

Tabla 3.6.3-1: Factor de suelo.

Normativa americana (AASHTO 2010):

La aceleración a $_{\rm c}$ a introducir en el caso de la normativa AASHTO se corresponde con la aceleración sísmica de pico modificado por el factor de emplazamiento para pequeños periodos A $_{\rm s}$ (ver apartado 3.10.4.2 de la normativa AASHTO).

Impacto de vehículo

El programa permite considerar una acción de impacto de vehículo en coronación de muro que permite considerar el choque de un vehículo sobre un pretil u obstáculo situado en la coronación del muro.

La acción de impacto está compuesta por una fuerza horizontal puntual (H), una fuerza vertical puntual (V) y un momento puntual (M) (ver figura 3.6.3-1).

Asimismo debe definirse la anchura en la que actúan dichas cargas puntuales y el ángulo de reparto o difusión de estas cargas en la altura del muro (un valor usual para este ángulo es 30°).

CivilCAD3000 considerará la carga situada en cada una de las secciones transversales de cálculo que se hayan definido.

3.7 Orden Coeficientes de mayoración de acciones

Los coeficientes de mayoración de acciones corresponden a los coeficientes favorables y desfavorables por los que se multiplicaran los valores característicos de las distintas acciones para obtener las acciones y los esfuerzos mayorados a partir de los cuales se combinaran para obtener los valores de combinación.

Los coeficientes de mayoración a introducir dependen la normativa considerada. En los siguientes subapartados se explican los valores que se deben introducir para cada una de las normativas.

3.7.1 Normativa española

Al seleccionar la opción *Coeficientes de mayoración de acciones* aparecerá en pantalla la ventana que se reproduce en la Figura 3.7.1-1.

Ca	oeficientes de	mayoración de las acciones											×
					E	stado límite	estructura	al		1	Estado límite	e geotécnic	0
				Estado l	ímite de		Estado lím	nite último			Estado lín	nite último	
				serv	icio	Situación p	ersistente	Situación	accidental	Situación p	persistente	Situación	accidental
				Fisuración / Deformaciones Flexión / Cortante Fle		Flexión /	Cortante	Hund. / Vuelco / Es	Desliz. / stab. global	Hund. / Vuelco / E	Desliz. / stab. global		
			4	Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.
		Peso propio muro		1.00	1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00
		Peso tierras trasdós		1.00	1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00
		Peso tierras puntera			1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00
		Empuje activo de las tierras f	trasdós	1.00	1.00	1.00	1.50	1.00	1.00	1.00	1.00	1.00	1.00
	Acciones	Empuje pasivo de las tierras en	n puntera	1.00	1.00	1.00	1.50	1.00	1.00	1.00	1.00	1.00	1.00
	permanentes	Sobrecarga permanente en trasdós	Empuje	1.00	1.00	1.00	1.50	1.00	1.00	1.00	1.00	1.00	1.00
			Acción vertical	1.00	1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00
		Carga permanente en coronació	in de muro	1.00	1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00
		Carga en faja	Empuje	1.00	1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00
			Acción vertical	1.00	1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00
		Sobrecarga de tráfico en trasdós	Empuje	0.00	1.00	0.00	1.50	0.00	1.00	0.00	1.00	0.00	1.00
	Acciones		Acción vertical	0.00	1.00	0.00	1.35	0.00	1.00	0.00	1.00	0.00	1.00
	variables	Carga de tráfico en coronacion	i de muro	0.00	1.00	0.00	1.35	0.00	1.00	0.00	1.00	0.00	1.00
		Viento		0.00	1.00	0.00	1.50	0.00	1.00	0.00	1.00	0.00	1.00
		Nivel freatico		0.00	1.00	0.00	1.50	1.00	1.00	0.00	1.00	1.00	1.00
	Acciones	Sismo						1.00	1.00			1.00	1.00
1	accidentaica	Impacto			_			1.00	1.00			1.00	1.00
	Recuperar v	alores Normativa						Api	icar	Ayuda	Acep	tar	Cancelar

El usuario debe validar o modificar en el cuadro de diálogo los coeficientes de mayoración de acciones a utilizar para cada tipo de carga. El programa precisa conocer los coeficientes de mayoración favorables (coeficiente que se aplica cuando la contribución de la acción es favorable al efecto que se analiza) y desfavorables (coeficiente que se aplica cuando la contribución de la acción es desfavorable al efecto que se analiza) a aplicar para cada estado límite y para cada situación. En concreto se debe definir:

- Coeficientes de mayoración para los estados límite de servicio estructurales correspondientes a las comprobaciones de fisuración y deformaciones.
- Coeficientes de mayoración para los estados límite últimos estructurales correspondientes a las comprobaciones de rotura por flexión y cortante en la situación persistente.
- Coeficientes de mayoración para los estados límite últimos estructurales correspondientes a las comprobaciones de rotura por flexión y cortante en la situación accidental.
- Coeficientes de mayoración para los estados límite últimos geotécnicos correspondientes a las comprobaciones de hundimiento, deslizamiento, vuelco y estabilidad global en la situación persistente.
- Coeficientes de mayoración para los estados límite últimos geotécnicos correspondientes a las comprobaciones de hundimiento, deslizamiento, vuelco y estabilidad global en la situación accidental.

Para mayor claridad en el encabezamiento del diálogo se especifica la comprobación a la que se aplicará cada pareja de valores de coeficientes de mayoración de acciones (Ver figura 3.7.1-2).

C	oeficientes de	mayoración de las acciones					1.00						×	
Γ														
					E	stado límite	e estructura	al		Estado límite geotécnico				
				Estado li	ímite de		Estado lín	nite último	e último		Estado lín	nite último		
				serv	icio	Situación n	ersistente	Situación	accidental	Situación r	persistente	Situación	accidental	
				Fisuración / Deformaciones Flexión / Cortante Flexión / Corta		Cortante	Hund. / Vuelco / Es	Desliz. / stab. global	Hund. / Vuelco / E	'Desliz. / stab. global				
				Efecto favorable	Efecto desfavor	Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.	
		Peso propio muro		1.00	1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00	
		Peso tierras trasdós		1.00	1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00	
		Peso tierras puntera		1.00	1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00	
		Empuje activo de las tierras t	rasdós	1.00	1.00	1.00	1.50	1.00	1.00	1.00	1.00	1.00	1.00	
	Acciones	Empuje pasivo de las tierras er	puntera	1.00	1.00	1.00	1.50	1.00	1.00	1.00	1.00	1.00	1.00	
	permanentes	Sobrecarga permanente en trasdós	Empuje	1.00	1.00	1.00	1.50	1.00	1.00	1.00	1.00	1.00	1.00	
		bobi cediga permanente en albaob	Acción vertical	1.00	1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00	
		Carga permanente en coronació	n de muro	1.00	1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00	
		Carga en faja	Empuje	1.00	1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00	
			Acción vertical	1.00	1.00	1.00	1.35	1.00	1.00	1.00	1.00	1.00	1.00	
		Sobrecarga de tráfico en trasdós	Empuje	0.00	1.00	0.00	1.50	0.00	1.00	0.00	1.00	0.00	1.00	
	Acciones		Acción vertical	0.00	1.00	0.00	1.35	0.00	1.00	0.00	1.00	0.00	1.00	
	variables	Carga de tráfico en coronación	de muro	0.00	1.00	0.00	1.35	0.00	1.00	0.00	1.00	0.00	1.00	
		Viento		0.00	1.00	0.00	1.50	0.00	1.00	0.00	1.00	0.00	1.00	
		Nivel freático		0.00	1.00	0.00	1.50	0.00	1.00	0.00	1.00	0.00	1.00	
	Acciones	Sismo						1.00	1.00			1.00	1.00	
	accidentales	Impacto						1.00	1.00			1.00	1.00	
	Recuperar	valores Normativa						Apl	icar	Ayuda	Acep	tar	Cancelar	

Figura 3.7.1-2: Estados límite a los que se aplica los coeficientes de mayoración.

Los coeficientes de seguridad propuestos por *CivilCAD3000* por defecto son los contemplados en la normativa correspondiente. Los valores correspondientes a los estados límite estructurales corresponden a los definidos en la Instrucción IAP-11, mientras que los correspondientes a los estados límites geotécnicos corresponden a los definidos en la Guía de cimentaciones.

El botón *Recuperar valores Normativa* permite recuperar en cualquier momento los valores definidos en la normativa.

3.7.2 Normativa europea

Al seleccionar la opción *Coeficientes de mayoración de acciones* aparecerá en pantalla la ventana que se reproduce en la Figura 3.7.2-1.

Co	eficientes de	e mayoración de las acciones											×
				Estado límite	de servicio				Estado lím	ite último			
				Fisuración / De	eformaciones	EL Equilibr	rio (EQU)	Estado Límite Ú	Último Estructur	al (STR) y Geo	técnico (GEO)	Situación a	ccidental
						Vue	lco	Estab. Globa	al / Desliz. / Hu	ndim. / Cortant	te / Flexión	Tod	los
				(tabla A2.6) (tabla A2.4 (A)) (tabla A2.4 (B))				(tabla A	2.4 (C))	(tabla	A2.5)		
				Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.
		Peso propio muro		1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.00
		Peso tierras trasdós		1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.00
		Peso tierras puntera		1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.00
		Empuje activo de las tierras	trasdós	1.00	1.00	0.95	1.05	1.00	1.50	1.00	1.30	1.00	1.00
	Acciones	Empuje pasivo de las tierras e	n puntera	1.00	1.00	0.95	1.05	1.00	1.50	1.00	1.30	1.00	1.00
	permanentes	Sobrecarda permanente en trasdós	Empuje	1.00	1.00	0.95	1.05	1.00	1.50	1.00	1.30	1.00	1.00
		boblecarga permanente en a asus	Acción vertical	1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.00
		Carga permanente en coronacio	ón de muro	1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.00
		Carga en faia	Empuje	1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.00
		earga ch haja	Acción vertical	1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.00
		Sobrecarga de tráfico en trasdós	Empuje	0.00	1.00	0.00	1.35	0.00	1.50	0.00	1.30	0.00	1.00
	Acciones		Acción vertical	0.00	1.00	0.00	1.35	0.00	1.35	0.00	1.00	0.00	1.00
	variables	Carga de tráfico en coronación	n de muro	0.00	1.00	0.00	1.35	0.00	1.35	0.00	1.00	0.00	1.00
		Viento		0.00	1.00	0.00	1.50	0.00	1.50	0.00	1.30	0.00	1.00
		Nivel freático		0.00	1.00	0.00	1.50	0.00	1.50	0.00	1.30	0.00	1.00
	Acciones	Sismo										0.00	1.00
	accidentales	Impacto										0.00	1.00
	Recuperar	valores Normativa							A	plicar	Ayuda	Aceptar	Cancelar

Figura 3.7.2-1: Ventana de definición de los coeficientes de mayoración de acciones para la normativa europea (Eurocódigos).

El usuario debe validar o modificar en el cuadro de diálogo los coeficientes de mayoración de acciones (denominados también en los Eurocódigos como coeficientes A) a utilizar para cada tipo de carga. El programa precisa conocer los coeficientes de mayoración favorables (coeficiente que se aplica cuando la contribución de la acción es favorable al efecto que se analiza) y desfavorables (coeficiente que se analiza) a aplica cuando la contribución de la acción es desfavorable al efecto que se analiza) a aplicar para cada estado límite y para cada situación. En concreto se debe definir:

- Coeficientes de mayoración para los estados límite de servicio estructurales correspondientes a las comprobaciones de fisuración y deformaciones.
- Coeficientes de mayoración para los estados límite últimos de equilibrio (EQU) correspondientes a la comprobación de vuelco en la situación persistente.

- Coeficientes de mayoración para los estados límite últimos estructurales (STR) y geotécnicos (GEO) correspondientes a las comprobaciones de estabilidad global, deslizamiento, hundimiento y rotura por flexión y cortante en la situación persistente. En este caso hay que definir dos parejas de valores correspondientes a los coeficientes A1 (Tabla A2.4 (B) del Anejo 2 del Eurocódigo EN-1990) y los coeficientes A2 (Tabla A2.4 (2) del Anejo 2 del Eurocódigo EN-1990); *CivilCAD3000* adoptará los valores que corresponda en cada caso en función del Enfoque que haya seleccionado el usuario en el diálogo de *Coeficientes de seguridad y combinación* (ver apartado 3.8.2 de este Manual).
- Coeficientes de mayoración para todos los estados límite últimos correspondientes a las comprobaciones de estabilidad global, deslizamiento, vuelco, hundimiento y rotura por flexión y cortante en la situación accidental.

Para mayor claridad en el encabezamiento del diálogo se especifica la comprobación a la que se aplicará cada pareja de valores de coeficientes de mayoración de acciones (Ver figura 3.7.2-2). También se indica la tabla del Anejo 2 del Eurocódigo EN-1990 en el que se definen los coeficientes de mayoración de acciones.

			Estado límite	de servicio	Estado límite último								
							Situación p	ersistente					
			Fisuración / De	eformaciones	EL Equilibr	EL Equilibrio (EQU) Estado Límite Último Es			Estructural (STR) y Geotécnico (GEO)			ccidental	
					Vue	lco	Estab. Globa	al / Desliz. / Hu	ndim. / Cortani	te / Flexión	Tod	los	
			(tabla A2.6) (tabla A2.4 (A)) (tabla A					2.4 (B))	(tabla A	2.4 (C))	(tabla	A2.5)	
			Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.	Efecto favorable	Efecto desfavor.	
	Peso propio muro		1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.0	
	Peso tierras trasdós		1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.0	
	Peso tierras puntera		1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.0	
	Empuje activo de las tierras t	rasdós	1.00	1.00	0.95	1.05	1.00	1.50	1.00	1.30	1.00	1.	
Acciones	Empuje pasivo de las tierras en	puntera	1.00	1.00	0.95	1.05	1.00	1.50	1.00	1.30	1.00	1.	
ermanentes	Sobrecarga permanente en trasdós	Empuje	1.00	1.00	0.95	1.05	1.00	1.50	1.00	1.30	1.00	1.	
	bobi ceal ga permanente en a abaob	Acción vertical	1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.	
	Carga permanente en coronació	n de muro	1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.	
	Carga en faja	Empuje	1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.	
		Acción vertical	1.00	1.00	0.95	1.05	1.00	1.35	1.00	1.00	1.00	1.	
	Sobrecarga de tráfico en trasdós	Empuje	0.00	1.00	0.00	1.35	0.00	1.50	0.00	1.30	0.00	1.	
Acciones	-	Acción vertical	0.00	1.00	0.00	1.35	0.00	1.35	0.00	1.00	0.00	1.	
variables	Carga de tráfico en coronación	de muro	0.00	1.00	0.00	1.35	0.00	1.35	0.00	1.00	0.00	1.	
	Viento		0.00	1.00	0.00	1.50	0.00	1.50	0.00	1.30	0.00	1.	
	Nivel freatico		0.00	1.00	0.00	1.50	0.00	1.50	0.00	1.30	0.00	1.	
ccidentales	Impacto										0.00	1.	

Figura 3.7.2-2: Estados límite a los que se aplica los coeficientes de mayoración.

El botón *Recuperar valores Normativa* permite recuperar en cualquier momento los valores definidos en la normativa.

3.7.3 Normativa americana

Al seleccionar la opción *Coeficientes de mayoración de acciones* aparecerá en pantalla la ventana que se reproduce en la Figura 3.7.3-1.

Coeficientes de	mayoración de las acciones					-								
			Estabilida Fisuración / D	d global / eformaciones	Desliz. / Vuelco / Hundim. / Cortante / Flexión									
			Estado límite	de servicio	Estado Límite de Resistencia				ncia			E.L. de ev	evento extremo	
			Consider T		Resist	encia I	Resiste	ncia III	Resiste	encia V	Evento e	xtremo I	Evento es	xtremo II
			Servi	CIO 1	Combinac	ión básica	Viento >	55 mph	Viento <:	= 55 mph	Combinaci	ón sísmica	Combinación	1 de impacto
				Desfavor.	Favorable	Desfavor.	Favorable	Desfavor.	Favorable	Desfavor.	Favorable	Desfavor.	Favorable	Desfavor.
	Peso propio muro		1.00	1.00	0.90	1.25	0.90	1.25	0.90	1.25	0.90	1.25	0.90	1.25
	Peso tierras trasdós		1.00	1.00	1.00	1.35	1.00	1.35	1.00	1.35	1.00	1.35	1.00	1.35
	Peso tierras puntera		1.00	1.00	1.00	1.35	1.00	1.35	1.00	1.35	1.00	1.35	1.00	1.35
	Empuje activo de las tierras	trasdós	1.00	1.00	0.90	1.50	0.90	1.50	0.90	1.50	0.90	1.50	0.90	1.50
Acciones	Empuje pasivo de las tierras er	puntera	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
permanentes	Sobrecarga permanente en trasdós	Empuje	1.00	1.00	0.65	1.50	0.65	1.50	0.65	1.50	0.65	1.50	0.65	1.50
	bobiecal ga permanente en trababo	Acción vertical	1.00	1.00	0.65	1.50	0.65	1.50	0.65	1.50	0.65	1.50	0.65	1.50
	Carga permanente en coronació	n de muro	1.00	1.00	0.65	1.50	0.65	1.50	0.65	1.50	0.65	1.50	0.65	1.50
	Carga en faja	Empuje	1.00	1.00	0.90	1.25	0.90	1.25	0.90	1.25	0.90	1.25	0.90	1.25
		Acción vertical	1.00	1.00	0.90	1.25	0.90	1.25	0.90	1.25	0.90	1.25	0.90	1.25
	Sobrecarga de tráfico en trasdós	Empuje	0.00	1.00	0.00	1.75	0.00	0.00	0.00	1.35	0.00	1.00	0.00	0.50
Acciones	C	Accion vertical	0.00	1.00	0.00	1.75	0.00	0.00	0.00	1.35	0.00	1.00	0.00	0.50
variables	Carga de tratico en coronacion	i de muro	0.00	1.00	0.00	1.75	0.00	1.40	0.00	1.35	0.00	1.00	0.00	0.50
	Viento		0.00	1.00	0.00	1.00	0.00	1.40	0.00	1.00	0.00	1.00	0.00	1.00
Accience	Nivel freatico		0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00
accidentales	Impacto										0.00	1.00	0.00	1.00
Designed	Impucto													
Recuperar	valores Normativa								A	plicar	Ayuda	Ac	eptar	Cancelar

Figura 3.7.3-1: Ventana de definición de los coeficientes de mayoración de acciones para la normativa americana (AASHTO 2010).

El usuario debe validar o modificar en el cuadro de diálogo los coeficientes de mayoración de acciones a utilizar para cada tipo de carga. El programa precisa conocer los coeficientes de mayoración favorables (coeficiente que se aplica cuando la contribución de la acción es favorable al efecto que se analiza) y desfavorables (coeficiente que se aplica cuando la contribución de la acción es desfavorable al efecto que se analiza) a aplicar para cada estado límite. En concreto se debe definir:

- Coeficientes de mayoración para los estados límite de Servicio I correspondientes a las comprobaciones de estabilidad global, fisuración y deformaciones.
- Coeficientes de mayoración para el estado límite de Resistencia I correspondiente a las comprobaciones de deslizamiento, vuelco, hundimiento y rotura por flexión y cortante.
- Coeficientes de mayoración para el estado límite de Resistencia III correspondiente a las comprobaciones de deslizamiento, vuelco, hundimiento y rotura por flexión y cortante.
- Coeficientes de mayoración para el estado límite de Resistencia V correspondiente a las comprobaciones de deslizamiento, vuelco, hundimiento y rotura por flexión y cortante.
- Coeficientes de mayoración para el estado límite de Evento Extremo I (combinación de sismo) correspondiente a las comprobaciones de estabilidad global, deslizamiento, vuelco, hundimiento y rotura por flexión y cortante.
- Coeficientes de mayoración para el estado límite de Evento Extremo II (combinación de impacto de vehículo) correspondiente a las comprobaciones de estabilidad global, deslizamiento, vuelco, hundimiento y rotura por flexión y cortante.

Para mayor claridad en el encabezamiento del diálogo se especifica la comprobación a la que se aplicará cada pareja de valores de mayoración de acciones (Ver figura 3.7.3-2). Para la comprobación de estabilidad global en situación sísmica y de impacto de vehículo se adoptan los mismos coeficientes que para el resto de comprobaciones.

Coeficientes d	e mayoración de las acciones													×
			Estabilida Fisuración / De	d global / eformaciones				Desliz. / V	uelco / Hun	dim. / Corta	ante / Flexi	ón		
			Estado límite	de servicio	Estado Límite de Resistencia				icia			E.L. de ev	ento extremo	>
			Servicio I		Resiste	encia I	Resiste	ncia III	Resiste	encia V	Evento e	xtremo I	Evento es	ktremo II
			Jervi	CIUI	Combinaci	ón básica	Viento >	55 mph	Viento <=	= 55 mph	Combinaci	ón sísmica	Combinación	de impacto
			Favorable	Desfavor.	Favorable	Desfavor.	Favorable	Desfavor.	Favorable	Desfavor.	Favorable	Desfavor.	Favorable	Desfavor.
	Peso propio muro		1.00	1.00	0.90	1.25	0.90	1.25	0.90	1.25	0.90	1.25	0.90	1.25
	Peso tierras trasdós		1.00	1.00	1.00	1.35	1.00	1.35	1.00	1.35	1.00	1.35	1.00	1.35
	Peso tierras puntera		1.00	1.00	1.00	1.35	1.00	1.35	1.00	1.35	1.00	1.35	1.00	1.35
	Empuje activo de las tierras	trasdós	1.00	1.00	0.90	1.50	0.90	1.50	0.90	1.50	0.90	1.50	0.90	1.50
Acciones	Empuje pasivo de las tierras er	n puntera	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
permanentes	Sobrecarga permanente en trasdós	Empuje	1.00	1.00	0.65	1.50	0.65	1.50	0.65	1.50	0.65	1.50	0.65	1.50
	bobi cearga permanente en trabato	Acción vertical	1.00	1.00	0.65	1.50	0.65	1.50	0.65	1.50	0.65	1.50	0.65	1.50
	Carga permanente en coronacio	ón de muro	1.00	1.00	0.65	1.50	0.65	1.50	0.65	1.50	0.65	1.50	0.65	1.50
	Carga en faia	Empuje	1.00	1.00	0.90	1.25	0.90	1.25	0.90	1.25	0.90	1.25	0.90	1.25
		Acción vertical	1.00	1.00	0.90	1.25	0.90	1.25	0.90	1.25	0.90	1.25	0.90	1.25
	Sobrecarga de tráfico en trasdós	Empuje	0.00	1.00	0.00	1.75	0.00	0.00	0.00	1.35	0.00	1.00	0.00	0.50
Acciones		Acción vertical	0.00	1.00	0.00	1.75	0.00	0.00	0.00	1.35	0.00	1.00	0.00	0.50
variables	Carga de tráfico en coronación	n de muro	0.00	1.00	0.00	1.75	0.00	0.00	0.00	1.35	0.00	1.00	0.00	0.50
	Viento		0.00	0.30	0.00	0.00	0.00	1.40	0.00	0.40	0.00	0.00	0.00	0.00
	Nivel freatico		0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00
Acciones	Sismo										0.00	1.00	0.00	1.00
accuentales	Impacto												0.00	1.00
Recuperar	valores Normativa								A	plicar	Ayuda	Ace	eptar	Cancelar

Figura 3.7.3-2: Estados límite a los que se aplica los coeficientes de mayoración.

El botón *Recuperar valores Normativa* permite recuperar en cualquier momento los valores definidos en la normativa.

3.8 Orden Coeficientes de seguridad y combinación

Con esta orden se accede para las normativas española y europea a la ventana de definición del resto de coeficientes de seguridad que es necesario definir. Los coeficientes que se deben definir dependen de la normativa.

3.8.1 Normativa española

En la Figura 3.8.1-1 se muestra la ventana que aparece al seleccionar la orden *Coeficientes de seguridad y combinación* para la normativa española.

	Materiales		Coeficientes de se		segu	ridad	Factores de	e cansancio	
			γels		<i>Y</i> ELU pers	lst.	YELU acc.	α _{cc}	αct
	Hormigón del al	zado		1.00	1	.50	1.30	1.00	1.00
	Hormigón de la z	rmigón de la zapata		1.00	1	.50	1.30	1.00	1.00
	Acero para la armadu	ura pasiva		1.00	1	. 15	1.00) -	-
Coeficiente	s de seguridad Estado	s Límite Ge	eotécnicos	s					
	Situación	Combir	nación	Hun	dimiento	Des	lizamiento	Vuelco rígido	Estabilidad global
	Densistante	Caracte	erística		2.60		1.30	1.80	1.3
	Persistente	Casi perr	manente		3.00		1.50	2.00	1.5
	Accidental	Sísn	nica		2.20		1.10	1.50	1.1
	Accidental	Sísn Impa	nica acto		2.20		1.10 1.10	1.50 1.50	1.1
Coeficiente	Accidental s de combinación carga de tráfico Viento	Sísn Impa	nica acto μ/1 ξ 1.00 0.20	₩2 1.00 0.00	2.20		1.10 1.10 Re	1.50 1.50 cuperar valore	1. 1. es Normativ

Figura 3.8.1-1: Coeficiente de minoración de materiales, factor de seguridad geotécnicos y coeficientes de combinación.

En este diálogo se deben definir:

- Los coeficientes de minoración de las resistencias de los materiales.
- Los coeficientes de seguridad para los estados límite geotécnicos.
- Los coeficientes de combinación.
- El movimiento máximo admisible en coronación de muro.

Al abrir por primera vez el diálogo se mostrarán por defecto los coeficientes de seguridad definidos en la normativa, salvo el valor del movimiento máximo en coronación del muro, que debe ser definido por el usuario.

Todos los coeficientes pueden ser modificados libremente por el usuario. En caso de que una vez modificados los coeficientes se quiera restituir los valores de la normativa se debe pulsar el botón *Recuperar valores Normativa*.

Coeficientes de minoración de los materiales

Para cada uno de los materiales definidos por el usuario (hormigón del alzado, hormigón de la zapata de las aletas y acero de la armadura pasiva), se deben definir los siguientes coeficientes de minoración de los materiales:

Para el material tipo hormigón

- Coeficiente de minoración de la resistencia del hormigón para las combinaciones del Estado Límite de Servicio.

- Coeficiente de minoración de la resistencia del hormigón para las combinaciones del Estado Límite Último en situación persistente.
- Coeficiente de minoración de la resistencia del hormigón para las combinaciones del Estado Límite Último en situación accidental.
- Factor de cansancio en compresión, α_{cc} .
- Factor de cansancio en tracción, α_{ct} .

Para el material tipo acero para armaduras pasivas.

- Coeficiente de minoración de la resistencia del acero para las combinaciones del Estado Límite de Servicio.
- Coeficiente de minoración de la resistencia del acero para las combinaciones del Estado Límite Último en situación persistente.
- Coeficiente de minoración de la resistencia del acero para las combinaciones del Estado Límite Último en situación accidental.

Los coeficientes de minoración de la resistencia para los materiales se definen en el artículo 15.3 de la EHE-08, siendo los valores propuestos por la normativa los que se presentan en las siguientes tablas:

Coeficientes de min	Coeficientes de minoración para Estados Límite de Servicio				
Situación de proyecto	Hormigón γ _c	Acero γ _s			
Persistente o transitoria	1,00	1,00			
Accidental	1,00	1,00			

Tabla 3.8.1-1: Coeficiente de minoración de materiales en ELS según EHE-08.

Coeficientes de m	cientes de minoración para Estados Límite Últimos				
Situación de proyecto	Hormigón γ _c	Acero γ _s			
Persistente o transitoria	1,50	1,15			
Accidental	1,30	1,00			

Tabla 3.8.1-2: Coeficiente de minoración de materiales en ELU según EHE-08.

Los factores de cansancio se definen en el artículo 39.4 de la EHE-08. Este coeficiente multiplica a la resistencia del hormigón para tener en cuenta el cansancio del hormigón cuando está sometido a altos niveles de tensión de compresión (α_{cc}) o tracción (α_{ct}) debido a cargas de larga duración. Con carácter general se adopta el valor unidad (1,0) para ambos coeficientes.

Factores de seguridad para los Estados Límite Geotécnicos

CivilCAD3000 lleva a cabo la comprobación de los Estados Límite Geotécnicos de acuerdo con la Guía de Cimentaciones [1], en la cual se establecen los Factores de seguridad que se deben verificar para los estados límite de hundimiento, deslizamiento, vuelco y estabilidad global para las diferentes situaciones y combinaciones de cálculo. Recuérdese que la Guía

de Cimentaciones establece la seguridad en base a un único factor de seguridad global, es decir, sin mayorar las acciones.

Los valores propuestos en el apartado 6.4 de la Guía de cimentaciones se presentan en las siguientes tablas:

		Hundimiento	Deslizamiento	Vuelco	Estabilidad global
Persistente	Característica	2,60	1,30	1,80	1,30
	Casi permanente	3,00	1,50	2,00	1,50
Accidental	Sísmica	2,20	1,10	1,50	1,10
	Impacto	2,20	1,10	1,50	1,10

Tabla 3.8.1-3: Factores de seguridad geotécnicos según la Guía de Cimentaciones.

En cualquier caso, estos coeficientes pueden modificarse en función de la importancia de la obra o en el caso del estado límite de hundimiento en función del método de análisis empleado para la determinación de la carga de hundimiento.

Coeficientes de combinación

Se deben definir los coeficientes de combinación de las acciones variables (tráfico, viento y nivel freático), que permitirán calcular el valor representativo de cada acción a utilizar en las distintas combinaciones de cálculo según se establece en el apartado 6.3 de la Instrucción IAP-11.

- Valor de combinación $\psi_0 Q_k$
- Valor de frecuente $\psi_1 Q_k$
- Valor de casi-permanente $\psi_2 Q_k$

Los coeficientes de combinación se definen en la normativa IAP-11 (apartado 6.1 para el caso de muros de carretera o en el Código Técnico de la Edificación Documento Básico SE Seguridad Estructural (capítulo 4).

Los valores que aparecen por defecto en *CivilCAD3000* corresponden a la normativa IAP-11.

Movimientos admisibles

El usuario debe definir el movimiento máximo horizontal admisible en coronación de muro. Este valor se utilizará para la comprobación del estado límite de deformaciones.

3.8.2 Normativa europea

En la Figura 3.8.2-1 se muestra la ventana que aparece al seleccionar la orden *Coeficientes de seguridad y combinación* para la normativa europea.

encientes k de minoración de	a resistencia					
			Estado límite último			
		Situación p	ersistente		Citure side and states	
	EL Equilibrio (EQU)	Estado Límite Últ	imo Estructural (STR) y Ge	eotécnico (GEO)	Situación accidental	
	Vuelco	Estab. Global	/ Desliz. / Hundim. / Corta	ante / Flexión	Todos	
	Ap.2.4.7.2 EN-1997	Tabla	A. 13 y A. 14 Anejo A EN-	1997	Ap. 2. 4. 7. 1 EN-1997	
	R	R1	R2	R3	R	
Estabilidad global	_	1.00	1.00	1.00	1.00	
Hundimiento		1.00	1.40	1.00	1.00	
Deslizamiento		1.00	1.10	1.00	1.00	
Flexión		1.00	1.00	1.00	1.00	
Cortante		1.00	1.00	1.00	1.00	
Vuelco	1.0	00			1.00	
eficientes M de minoración de	os parámetros geotécnic	:0S				
	Estado límite de servicio		Estado lími	te último		
			Situación persistente			
	Eiguragión /		and the second s			
	Deformaciones	EL Equilibrio (EQU)	Estado Limite Ultimo Est (ructural (STR) y Geotécnio GEO)	co Situación accidenta	
	Deformaciones	EL Equilibrio (EQU) Vuelco	Estado Limite Ultimo Est (I Estab. Global / Desliz. / I	ructural (STR) y Geotécnio GEO) Hundim. / Cortante / Flexi	co Situación accidenta	
	Ap. 2. 4.8 EN-1997	EL Equilibrio (EQU) Vuelco Tabla A.2 Anejo 2 EN-1997	Estado Limite Ultimo Est (1) Estab. Global / Desliz. / 1 Tabla A.4 A	ructural (STR) y Geotécnio GEO) Hundim. / Cortante / Flexi nejo A EN-1997	ón Todos Ap. 2.4.7.1 EN-199	
Ángula da ramaniante interna	Ap. 2.4,8 EN-1997	EL Equilibrio (EQU) Vuelco Tabla A.2 Anejo 2 EN-1997 M	Estado Limite Ultimo Est (t) Estab. Global / Desliz. / 1 Tabla A.4 A M1	ructural (STR) y Geotécnio GEO) Hundim. / Cortante / Flexi nejo A EN-1997 M2	Situación accidenta ón Todos Ap.2.4.7.1 EN-1993 M 25 1.00	
Ángulo de rozamiento interno	Ap. 2. 4.8 EN-1997 M 1.00	EL Equilibrio (EQU) Vuelco Tabla A.2 Anejo 2 EN-1997 M 1.25	Estado Limite Ultimo Est (f Estab. Global / Desliz. / I Tabla A.4 A M1 1.00	ructural (STR) y Geotécnio GEO) Hundim. / Cortante / Flexi nejo A EN-1997 M2 1.	Situación accidenta ón Todos Ap.2.4.7.1 EN-1993 M .25 1.00 .25 1.00	
Ángulo de rozamiento interno Cohesión Densidad de las tierras	Ap. 2.4.8 EN-1997 M 1.00 1.00	EL Equilibrio (EQU) Vuelco Tabla A.2 Aneto 2 EN-1997 M 1.25 1.25 1.20	Estado Limite Ultimo Est ((Estab. Global / Desliz. / 1 Tabla A.4 A M1 1.00 1.00	ructural (STR) y Geotécnio GEO) Hundim. / Cortante / Flexi neio A EN-1997 M2 1. 1.	Situación accidenta ón Todos Ap. 2. 4. 7. 1 EN-1993 M .25 1.00 .25 1.00 .00 1.00	
Ángulo de rozamiento interno Cohesión Densidad de las tierras	Ap.2.4.8 EN-1997 M 1.00 1.00 1.00	EL Equilibrio (EQU) Vuelco Tabla A.2 Aneto 2 EN-1997 M 1.25 1.25 1.00	Estado Limite Ultimo Est (t Estab. Global / Desliz. / 1 Tabla A.4 A M1 1.00 1.00 1.00	ructural (STR) y Geotécnia GEO) Hundim. / Cortante / Flexi neio A EN-1997 M2 1. 1. 1.	Situación accidenta ón Todos Ap.2.4.7.1 EN-199: M .25 1.00 .25 1.00 .00 1.00	
Ángulo de rozamiento interno Cohesión Densidad de las tierras eficientes de minoración de los	Ap. 2. 4.8 EN-1997 M 1.00 1.00 materiales	EL Equilibrio (EQU) Vuelco Tabla A.2 Anejo 2 EN-1997 M 1.25 1.25 1.00	Estado Limite Ultimo Est () Estab. Global / Desilz. /) Tabla A.4 A M1 1.00 1.00 1.00 Coeficie	ructural (STR) y Geotécnia GEO) Hundim. / Cortante / Flexi nejo A EN-1997 M2	Situación accidenta Ón Todos Ap.2.4.7.1 EN-1993 M .25 1.00 .00 1.00	
Ángulo de rozamiento interno Cohesión Densidad de las tierras eficientes de minoración de los	Ap. 2. 4.8 EN-1997 M 1.00 1.00 1.00 materiales	EL Equilibrio (EQU) Vuelco Tabla A.2 Aneio 2 EN-1997 M 1.25 1.25 1.00	Estado Limite Ultimo Est () Estab. Global / Desilz. /) Tabla A.4 A M1 1.00 1.00 1.00	ructural (STR) y Geotécnia GEO) Hundim. / Cortante / Flexi nejo A EN-1997 M2 1. 1. 1. 1. entes de combinación	Stuación accidenta ón Todos Ap.2.4.7.1 EN-199; M .25 1.00 .25 1.00 .00 1.00	
Ángulo de rozamiento interno Cohesión Densidad de las tierras eficientes de minoración de los	Ap.2.4.8 EN-1997 M M 1.00 1.00 1.00 materiales	EL Equilibrio (EQU) Vuelco Tabla A.2 Anejo 2 EN-1997 M 1.25 1.25 1.00	Estado Limite Ultimo Est () Estab. Global / Desiz. // Tabla A.4 A M1 1.00 1.00 1.00 2.00 50b	ructural (STR) y Geotécnia GEO) Hundim. / Cortante / Flexi nejo A EN-1997 M2 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Situación accidenta ón Todos Ap.2.4.7.1EN-199: M .25 1.00 .00 1.00 00 1.00 0 1.01 0 1.00	
Ángulo de rozamiento interno Cohesión Densidad de las tierras eficientes de minoración de los Materiales	Ap. 2.4,8 EN-1997 M M 1.00 1.00 1.00 1.00	EL Equilibrio (EQU) Vuelco Tabla A. 2 Anejo 2 EN-1997 M. 1.25 1.25 1.25 1.25 2.25 4.25 2.25 4.25 2.55 2.55	Estado Limite Ultimo Est () Estab. Global / Desiz. / / Tabla A, 4 A M1 1.00 1.00 1.00 2.00 50d	Viento de tráfico 10 Company de tráfico 10 C	Stuación accidenta ón Todos Ap.2.4.7.1 EN-1993 M .25 1.00 .25 1.00 0 \$\nu\$'1 \$\nu\$'1.00 1.00 0.60 0.20	
Ángulo de rozamiento interno Cohesión Densidad de las tierras eficientes de minoración de los Materiales	Ap. 2. 4.8 EN-1997 M 1.00 1.00 1.00	EL Equilibrio (EQU) Vuelco Tabla A.2 Aneio 2 EN-1997 M 1.25 1.00 seguridad Factores d x, 7EU acc. acc.	Estado Limite Ultimo Est () Estab. Global / Desiz. // Tabla A.4 A M1 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0	Viet Tradition (STR) y Geotécnie GEO) Hundim. / Cortante / Flexi neio A EN-1997 M2 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Vituación accidenta án Todos áp.2,4,7,1 EN-199; M 25 1.00 0 Ψ/1 Ψ/2 1.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00	
Ángulo de rozamiento interno Cohesión Densidad de las tierras eficientes de minoración de los Materiales Hormigón del alzado	Ap. 2. 4.8 EN-1997 M	EL Equilibrio (EQU) Vuelco Tabla A.2 Ancio 2 EN-1997 M 1.25 1.25 1.00 seguridad Factores d 1.20 1.00	Estado Limite Utimo Est () Estab. Global / Desiz. // Tabla A.4 A M1 1.00 1.00 1.00 Coeficie α _α 1.00 500	GEO) (STR) y Geotécnie GEO) (STA) y Geotécnie Mandim. / Cortante / Flexi meio A EN-1997 M2 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Situación accidenta án Todos Ap.2.4.7.1EN-199: M .25 1.00 .00 1.00 0 1.00 0.00 1.00 0.00 1.00 .60 0.20 .00 1.00 .00 1.00 .00 1.00	
Ángulo de rozamiento interno Cohesión Densidad de las tierras eficientes de minoración de los Materiales Hormigón del alzado Hormigón de la zapata	Ap. 2.4,8 EN-1997 M. 1.00 imateriales Coeficientes de 1 7/ELS 1.00	EL Equilibrio (EQU) Vuelco Tabla A. 2 Anejo 2 EN-1997 1.25 1.25 1.25 1.25 1.25 1.25 50 50 50 1.20 1.00	Estado Limite Utimo Esta (Estab, Global / Desiz, // Tabla A, 4 A M1 .00 1.00 e cansando α α 1.00 1.00 Enfoqui	Vietral (STR) y Geotécnie GEO) Hundim. / Cortante / Flexi neio A EN-1997 M2 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	o Situación accidenta ón Todos Ap.2.4.7. I EN-199	

Figura 3.8.2-1: Coeficiente de minoración y coeficientes de combinación .

En este diálogo se deben definir:

- Los coeficientes R de minoración de las resistencias.
- Los coeficientes M de minoración de los parámetros geotécnicos.
- Los coeficientes de minoración de los materiales (hormigón y acero).
- Los coeficientes de combinación.
- El tipo de Enfoque a considerar.
- El movimiento máximo admisible en coronación de muro.

Al abrir por primera vez el diálogo se mostrarán por defecto los coeficientes definidos en la normativa, salvo el valor del movimiento máximo en coronación del muro, que debe ser definido por el usuario.

Todos los coeficientes pueden ser modificados libremente por el usuario. En caso de que una vez modificados los coeficientes se quiera restituir los valores de la normativa se debe pulsar el botón *Recuperar valores Normativa*.

Coeficientes de minoración de los materiales

Para cada uno de los materiales definidos (hormigón del alzado, hormigón de la zapata de las aletas y acero de la armadura pasiva), se deben definir los siguientes coeficientes de minoración de los materiales:

Para el material tipo hormigón:

- Coeficiente de minoración de la resistencia del hormigón para las combinaciones del Estado Límite de Servicio.
- Coeficiente de minoración de la resistencia del hormigón para las combinaciones del Estado Límite Último en situación persistente.
- Coeficiente de minoración de la resistencia del hormigón para las combinaciones del Estado Límite Último en situación accidental.
- Factor de cansancio en compresión, α_{cc} .
- Factor de cansancio en tracción, α_{ct} .

Para el material tipo acero para armaduras pasivas.

- Coeficiente de minoración de la resistencia del acero para las combinaciones del Estado Límite de Servicio.
- Coeficiente de minoración de la resistencia del acero para las combinaciones del Estado Límite Último en situación persistente.
- Coeficiente de minoración de la resistencia del acero para las combinaciones del Estado Límite Último en situación accidental.

Los coeficientes de minoración de la resistencia para los materiales se definen en el artículo 2.4.2.4 del Eurocódigo EN-1992-1-1, siendo los valores propuestos por la normativa los que se presentan en las siguientes tablas:

Coeficientes de minoración para Estados Límite de Servicio				
Situación de proyecto	Hormigón γ _c	Acero γ _s		
Persistente o transitoria	1,00	1,00		
Accidental	1,00	1,00		

Tabla 3.8.1-1: Coeficiente de minoración de materiales en ELS según EN-1992-1-1.

Coeficientes de minoración para Estados Límite Últimos			
Situación de proyecto Hormigón γ _c Acero γ _s			
Persistente o transitoria	1,50	1,15	
Accidental	1,20	1,00	

Tabla 3.8.1-2: Coeficiente de minoración de materiales en ELU según EN-1992-1-1.

Los factores de cansancio se definen en el artículo 3.1.6 del Eurocódigo EN-1992-2:2005. Este coeficiente multiplica a la resistencia del hormigón para tener en cuenta el cansancio del hormigón cuando está sometido a altos niveles de tensión de compresión (α_{cc}) o tracción (α_{ct}) debido a cargas de larga duración.

Con carácter general el Eurocódigo propone valores entre 0,8 y 1,0 para ambos coeficientes, remitiendo a los correspondientes anejos nacionales para su determinación; no obstante recomienda en su ausencia los siguientes valores:

 $\alpha_{cc} = 0.8$ $\alpha_{ct} = 1.0$

Tipo de enfoque de cálculo

De acuerdo con el Eurocódigo EN-1990, en estructuras en las que intervienen acciones geotécnicas y/o resistencias del terreno, el estado límite último estructural (STR) y geotécnico (GEO) deben ser verificados utilizando uno de los tres enfoques posibles que se definen a continuación, combinando los coeficientes parciales de mayoración de acciones (coeficientes A de mayoración de acciones definidos en el apartado 3.7.2 de este documento), factores parciales sobre los parámetros del terreno (coeficientes M) y factores parciales sobre la resistencia (R).

Cabe pues remarcar que el cálculo según el enfoque afecta únicamente a los estados límite últimos estructurales (STR) y geotécnicos (GEO) en situación persistente, es decir, a la Estabilidad Global, Deslizamiento, Hundimiento, Cortante y Flexión. El vuelco se considera un estado límite de equilibrio (EQU).

A continuación se define cada uno de los tres enfoques posibles, entre los cuales el usuario debe seleccionar la opción deseada.

Enfoque 1 (Approach 1):

Se realizan dos cálculos independientes (Cálculo 1 y Cálculo 2) y se adoptan los efectos más desfavorables:

- Cálculo 1: A1 + M1 + R1
- Cálculo 2: A2 + M2 + R1

<u>Cálculo 1 (A1+M1+R1)</u>: Se realiza el cálculo con los siguientes coeficientes de seguridad parciales:

Acciones (\gamma_F): Coeficientes de mayoración de acciones de la Tabla A2.4 (B) del Anejo 2 del Eurocódigo EN-1990 (equivale a los valores de la columna A1 de la Tabla A.3 del Anejo A del EN-1997) (ver apartado 3.7.2 de este documento).

Parámetros del terreno (\gamma_M): Coeficientes parciales de los parámetros del terreno correspondientes a la columna M1 de la Tabla A.4 del Anejo A del EN-1997.

Resistencia del terreno (γ_R) : Coeficientes parciales de la resistencia del terreno correspondientes a la columna R1 de las Tablas A.13 y A.14 del Anejo A del EN-1997.

<u>Cálculo 2 (A2+M2+R1)</u>: Se realiza el cálculo con los siguientes coeficientes de seguridad parciales:

Acciones (\gamma_F): Coeficientes de mayoración de acciones de la Tabla A2.4 (C) (equivale a los valores de la columna A2 de la Tabla A.3 del Anejo A del EN-1997) (ver apartado 3.7.2 de este documento).

Parámetros del terreno (\gamma_M): Coeficientes parciales de los parámetros del terreno correspondientes a la columna M2 de la Tabla A.4 del Anejo A del EN-1997.

Resistencia del terreno (γ_R) : Coeficientes parciales de la resistencia del terreno correspondientes a la columna R1 de las Tablas A.13 y A.14 del Anejo A del EN-1997.

Enfoque 2 (Approach 2):

- A1+M1+R2

Se realiza un único cálculo (combinación A1+M1+R2) aplicando los coeficientes de mayoración de acciones siguientes:

Acciones (\gamma_F): Coeficientes de mayoración de acciones de la Tabla A2.4 (B) (equivale a los valores de la columna A1 de la Tabla A.3 del Anejo A del EN-1997) (ver apartado 3.7.2 de este documento).

Parámetros del terreno (\gamma_{M}): Coeficientes parciales de los parámetros del terreno correspondientes a la columna M1 de la Tabla A.4 del Anejo A del EN-1997.

Resistencia del terreno (γ_R) : Coeficientes parciales de la resistencia del terreno correspondientes a la columna R2 de las Tablas A.13 y A.14 del Anejo A del EN-1997.

Enfoque 3 (Approach 3):

- (A1 / A2) + M2 + R3

Se realiza un solo cálculo - Combinación (A1en acciones estructurales y A2 en acciones geotécnicas) + M2 + R3), aplicando los siguientes coeficientes de seguridad:

Acciones (γ_F): Coeficientes de mayoración de acciones de la Tabla A2.4 (C) a las acciones de naturaleza geotécnica, y los coeficientes de la Tabla A2.4 (B) a las acciones de naturaleza estructural (ver apartado 3.7.2 de este documento).

Parámetros del terreno (γ_{M}): Coeficientes parciales de los parámetros del terreno correspondientes a la columna M2 de la Tabla A.4 del Anejo A del EN-1997.

Resistencia del terreno (γ_R): Coeficientes parciales de la resistencia del terreno correspondientes a la columna R3 de las Tablas A.13 y A.14 del Anejo A del EN-1997.

Como acciones de naturaleza geotécnica, *CivilCAD3000* considera el peso de las tierras, el empuje de tierras, el peso y empuje debido a las sobrecargas que actúan en el trasdós del muro y el sismo.

Coeficientes R de minoración de la resistencia

De acuerdo con Eurocódigo 1990:2001 el valor resistente correspondiente a un estado límite último se establece como cociente entre la resistencia nominal y un coeficiente de minoración de la resistencia (coeficientes R, γ_R)

$$R_d = \frac{1}{\gamma_R} \cdot R\left(\gamma_F F; \frac{X_k}{\gamma_M}\right) \qquad (Ex. 3.8.1 - 1)$$

Así, deben definirse para los distintos estados límite los coeficientes de minoración R para cada situación, cuyo valor depende a su vez del tipo de Enfoque con el que se realiza el cálculo (coeficientes R1 para el enfoque 1, coeficientes R2 para el enfoque 2, y coeficientes R3 para el enfoque 3).

Coeficient	es R de minoración de la	resistencia				
				Estado límite último		
			Situación persistente			
		EL Equilibrio (EQU)	Estado Límite Últ	imo Estructural (STR) y G	eotécnico (GEO)	Situación accidental
		Vuelco	Estab. Global	/ Desliz. / Hundim. / Corta	ante / Flexión	Todos
		Ap. 2. 4. 7. 2 EN-1997	Tabla	A. 13 y A. 14 Anejo A EN-	1997	Ap.2.4.7.1 EN-1997
		R	R1	R2	R3	R
	Estabilidad global		1.00	1.00	1.00	1.00
	Hundimiento		1.00	1.40	1.00	1.00
	Deslizamiento		1.00	1.10	1.00	1.00
	Flexión		1.00	1.00	1.00	1.00
	Cortante		1.00	1.00	1.00	1.00
	Vuelco	1.00				1.00

Figura 3.8.2-2: Coeficientes R de minoración de la resistencia.

Para los estados límite estructurales (flexión y cortante), los coeficientes R toman valor unidad (1,0). Para el resto de estados límite últimos los valores se definen en el Eurocódigo EN-1997:2004.

En la siguiente tabla se especifican los apartados del Eurocódigo en los que se puede encontrar los valores para cada uno de los estados límite.

Situación	Estado Límite	Apartado normativa
	Vuelco	Ap. 2.4.7.2 EN-1997:2004
	Deslizamiento	Tablas A.13 y A.14 del Anejo A del
Situación paraistanta	Estabilidad global	EN-1997:2004
Situacion persistente	Hundimiento	
	Cortante	-
	Flexión	-
Situación accidental	Todos	Ap. 2.4.7.1 EN-1997:2004

 Tabla 3.8.1-3: Referencia Coeficientes R.

Coeficientes M de minoración de los parámetros geotécnicos

De acuerdo con Eurocódigo 1990:2001 el valor de los parámetros geotécnicos que intervienen en la determinación del valor de una determinada acción debe afectarse por un coeficiente de minoración (coeficientes M, $\gamma_{\rm M}$), cuyo valor depende del estado límite que se considere y del tipo de Enfoque con el que se realiza el cálculo (coeficientes M1 para el enfoque 1 y coeficientes M2 para el enfoque 2).

-Co	eficientes M de minoración de l	os parámetros geotécnico)S			
		Estado límite de servicio		Estado límit	te último	
				Situación persistente		
		Fisuración / Deformaciones	EL Equilibrio (EQU)	Estado Límite Último Esti ((ructural (STR) y Geotécnico GEO)	Situación accidental
			Vuelco	Estab. Global / Desliz. / H	Hundim. / Cortante / Flexión	Todos
		Ap. 2.4.8 EN-1997	Tabla A.2 Anejo 2 EN-1997	Tabla A.4 A	nejo A EN-1997	Ap. 2. 4. 7. 1 EN-1997
	-	M	M	M1	M2	М
	Ángulo de rozamiento interno	1.00	1.25	1.00	1.25	1.00
	Cohesión	1.00	1.25	1.00	1.25	1.00
	Densidad de las tierras	1.00	1.00	1.00	1.00	1.00

Figura 3.8.2-3: Coeficientes M de minoración de los parámetros geotécnicos.

Los coeficientes M se definen en el Eurocódigo EN-1997:2004.

En la siguiente tabla se especifican los apartados del Eurocódigo en los que se puede encontrar los valores para cada uno de los estados límite.

Estado Límite	Situación	verificación	Apartado normativa
E L Samuiaio	Todas	Fisuración	Ap. 2.4.8 EN-1997:2004
E.L. Servicio	Todas	Deformaciones	Ap. 2.4.8 EN-1997:2004
		Vuelco	Tabla A.2 del Anejo A del EN- 1997:2004
	Situación	Deslizamiento	Tablas A.4 del Anejo A del EN-
		Estabilidad global	1997:2004
E.L. Último	persistente	Hundimiento	
		Cortante	
		Flexión	
	Situación	Todos	Ap. 2.4.7.1 EN-1997:2004
	accidental	10005	

 Tabla 3.8.1-3: Referencia Coeficientes M.

Coeficientes de combinación

Se deben definir los coeficientes de combinación de las acciones variables (tráfico, viento y nivel freático), que permitirán calcular el valor representativo de cada acción a utilizar en las distintas combinaciones de cálculo según se estable en el apartado 6.4 y 6.5 del Eurocódigo EN-1990:2001.

- Valor de combinación $\psi_0 Q_k$
- Valor de frecuente $\psi_1 Q_k$
- Valor de casi-permanente $\psi_2 Q_k$

Los coeficientes de combinación se definen en el Anejo A1 del Eurocódigo 1990:2001 para edificios y en el Anejo 2 mismo Eurocódigo para puentes y obras de carretera en general.

Los valores que aparecen por defecto en *CivilCAD3000* corresponden a los valores propuestos en el Eurocódigo.

<u>Movimientos admisibles</u>

El usuario debe definir el movimiento máximo horizontal admisible en coronación de muro. Este valor se utilizará para la comprobación del estado límite de deformaciones.

3.9 Orden Factores de Resistencia (normativa americana)

Esta orden solo está activada para la normativa americana (AASHTO).

Al abrir por primera vez el diálogo se mostrarán por defecto los coeficientes definidos en la normativa, salvo el valor del movimiento máximo en coronación del muro, que debe ser definido por el usuario.

Todos los coeficientes pueden ser modificados libremente por el usuario. En caso de que una vez modificados los coeficientes se quiera restituir los valores de la normativa se debe pulsar el botón *Recuperar valores Normativa*.

La orden *Factores de Resistencia* permite definir los factores de resistencia que se considerarán en cada comprobación para la determinación de la resistencia mayorada. Recuérdese que la resistencia mayorada (R_R) se obtiene como producto de la resistencia nominal (R_n) por el factor de resistencia φ .

$$R_R = R_n \cdot \varphi \qquad (Ex.3.9 - 1)$$

Para que se verifique la condición de resistencia se debe cumplir la expresión 3.9-2:

$$R_u \le R_R \qquad (Ex.\,9.3-2)$$

Siendo R_u el efecto de la acción mayorada por los coeficientes de mayoración de acciones.

Al seleccionar esta opción aparecerá en pantalla la ventana que se muestra en la Figura 3.9-1.

	Comprob	ación		Servicio	Resistencia	Evento Extremo
Estabilidad global				0.65		1.00
	Hundim	iento			0.45	1.00
Declizamiento		Fricci	ón		0.80	1.00
Desizamiento	E	impuje p	asivo		0.50	1.00
	Vuel	0				
		Deform	nación límite <i>e</i> 1		-0.00500	-0.00500
	Elexión	Deform	nación límite 82		-0.00200	-0.00200
Alzado	The Albert	FF	R para <i>e</i> 1		0.90000	0.90000
		FF	R para ε_2		0.75000	0.75000
		Cortar	nte		0.70000	0.70000
		Deform	nación límite e1		-0.00500	-0.00500
	Flexión	Deform	nación límite 82		-0.00200	-0.00200
Zapata		FF	R para <i>e</i> 1		0.90000	0.90000
		FF	R para ϵ_2		0.75000	0.75000
		Cortar	nte		0.70000	0.70000
	Mus	lee		Excentricidad m	áxima / Ancho de l	a zapata
	vue	ico		Suelo	Roc	a
	Resist	tencia			0.250	0.375
Evente	Ev. Extre	mo I :	$\gamma_{EQ} = 0.00$		0.333	0.333
extremo	Sism	0	γ _{EQ} = 1.00		0.400	0.400
	Evento	Extrem	o II : Impacto		0.400	0.400
Movimientos a	admisibles					
De	solazamie	nto máx	imo horizontal en	coronación. U 🔬	0	mm
				, e x.		

Figura 3.9-1: Factores de resistencia (normativa AASHTO).

En este diálogo, se deben introducir los factores de resistencia para los estados límite de Servicio, Resistencia y de Evento Extremo para cada una de las comprobaciones a realizar. A continuación se detalla el significado de cada uno de ellos.

<u>Estabilidad global</u>: La resistencia a la estabilidad global M _R se obtiene como el Momento estabilizador nominal M_n (obtenido a partir de las acciones mayoradas) por el coeficiente de resistencia ϕ_{EG} .

$$M_R = M_n \cdot \varphi_{EG} \qquad (Ex.\,1.9-3)$$

<u>*Hundimiento:*</u> La capacidad de carga mayorada q_R se obtiene a partir de la capacidad de carga nominal q_n multiplicada por el factor de resistencia ϕ_b .

$$q_R = q_n \cdot \varphi_b \qquad (Ex.\,1.9-4)$$

El factor de resistencia a hundimiento varía en función de los métodos de análisis utilizados para la determinación de la capacidad nominal y de la fiabilidad de los parámetros geotécnicos utilizados.

Deslizamiento: Para el deslizamiento deben definirse los factores de resistencia para el rozamiento y para la resistencia pasiva (empuje pasivo). La resistencia mayorada se define según la siguiente expresión:

$$R_{R} = (V \cdot tg\delta + S \cdot c) \cdot \varphi_{t} + R_{ep} \cdot \varphi_{ep} \qquad (Ex.3.9 - 5)$$

, donde V es la reacción vertical, δ el ángulo de rozamiento zapata-terreno, S la superficie de contacto, c la adherencia zapata-terreno, R_{ep} las fuerzas que se oponen al deslizamiento, φ_t el factor de resistencia a rozamiento y φ_{ep} el factor de resistencia del empuje pasivo.

<u>Vuelco</u>: Para el vuelco la normativa AASHTO no define un coeficiente de resistencia sino que establece la verificación de la comprobación a vuelco limitando la excentricidad de la reacción en la base de la zapata. Es por ello que en el diálogo de la Figura 3.9-1 debe definirse la excentricidad máxima de dicha resultante como fracción en tanto por uno respecto al ancho de la zapata.

<u>Rotura a flexión</u>: Para la obtención del momento resistente mayorado M _R, debe definirse el factor de resistencia a flexión $\varphi_{\rm f}$.

$$M_{R} = \varphi_{f} \cdot M_{n} \qquad (Ex. 3.9 - 6)$$

, siendo M n el momento resistente nominal.

No obstante en el caso de la rotura por flexión no existe un valor único del factor de resistencia para cada estado límite (resistencia y evento extremo), sino que su valor depende de la deformación de la armadura más traccionada. Se define pues en este caso una función que relaciona dicha deformación con el factor de resistencia a adoptar; la forma de esta función es la que se muestra en la Figura 3.9-2.

$$\varphi_f = FR(\varepsilon) \qquad (Ex.3.9 - 7)$$

Figura 3.9-2: Variación del factor de resistencia a flexión en función de la deformación.

El usuario debe definir las deformaciones límite ε_1 y ε_2 y el valor del factor de resistencia asociados a estas deformaciones (deformación negativa equivale a tracción).

En la Figura 3.9-3 se muestran los valores definidos en la AASHTO que *CivilCAD3000* adopta por defecto.

		Deformación límite ε_1	-0.00500	-0.00500
	Elevién	Deformación límite ε_2	-0.00200	-0.00200
Alzado	Flexion	FR para ε_1	0.90000	0.90000
		FR para ε_2	0.75000	0.75000
		Cortante	0.70000	0.70000
	Flexión Det	Deformación límite 81	-0.00500	-0.00500
		Deformación límite ε_2	-0.00200	-0.00200
Zapata		FR para ε_1	0.90000	0.90000
		FR para ε_2	0.75000	0.75000
		Cortante	0.70000	0.70000

Figura 3.9-3: Valores por defecto de los factores de resistencia a flexión.

<u>Rotura a cortante</u>: Debe definirse el factor de resistencia a cortante que multiplicará a la resistencia nominal para obtener la resistencia mayorada a cortante.

$$V_{\rm r} = \phi \cdot V_{\rm n} \qquad (Ex. \ 3.9 - 7)$$

, con los siguientes significados:

- V_n Resistencia a cortante nominal.
- V_r Resistencia a cortante mayorada.
- φ Factor de resistencia a cortante (ver artículo 5.5.4.2 de la AASHTO 2010).

<u>Movimientos admisibles</u>

El usuario debe definir el movimiento máximo horizontal admisible en coronación de muro. Este valor se utilizará para la comprobación del estado límite de deformaciones.

3.10 Orden Armadura

La orden *Armadura* permite definir los recubrimientos geométricos de las armaduras del alzado y la zapata, así como establecer la configuración para la obtención del despiece de armaduras. Al seleccionar esta opción se desplegaran en el menú principal las siguientes órdenes (ver Figura 3.10-1).

- Recubrimientos.
- Despiece del alzado.
- Despiece de la zapata.

- Despiece del tacón.

Sin Nombre		
Muro Proyecto Forrada Geometría Terreno Materiales Clases de exposición Fisuración Coeficientes de mayoración de acci Coeficientes de seguridad y combin Acciones Coeficientes de seguridad y combin Acciones Coeficientes de lazado Despiece del alzado Despiece del lazado Despiece del lazado Despiece del lazon Configuración Salida	ones lación	
Verificación	Resultado	
<u> </u>		
Normas españolas EHE08 / IAP11	X: 0.000 X:	
Calcular todo Fi	jar / no fijar croquis	

Figura 3.10-1: Menú de la orden Armadura.

En los siguientes apartados se exponen cada una de estas órdenes.

3.10.1 Orden Recubrimientos

En esta opción, se deben introducir los recubrimientos geométricos (distancia del paramento a la generatriz más exterior de la armadura más superficial) de la zapata y el alzado del muro.

Recubrimientos	×
Recubrimientos geométricos	
Alzado : 0 mm Zapata : 0 mm	Calcular
Ayuda Aplicar Aceptar	Cancelar

Figura 3.10.1-1: Ventana para la definición de los recubrimientos.

CivilCAD3000 ofrece la posibilidad de calcular de forma automática los recubrimientos geométricos mediante el botón *Calcular*. Al seleccionar esta opción se calcularán los recubrimientos geométricos en base a las clases de exposición y tipo de hormigón definidos; es necesario por tanto haber definido los materiales y las clases de exposición.

En caso de que con posterioridad al cálculo de los recubrimientos, se modifique alguno de los parámetros que afectan a su cálculo, el usuario debe entrar de nuevo en la ventana de *Recubrimientos* y recalcularlos.

3.10.2 Orden Despiece del alzado

Al seleccionar la opción *Despiece del alzado* aparece en pantalla la ventana de la Figura 3.10.2-1.

Figura 3.10.2-1: Ventana para la configuración del armado del alzado.

Esta ventana permite definir los criterios con los que se desea que se realice el armado del alzado del muro. Concretamente,

- Permite definir si se disponen o no esperas en la zapata para la armadura vertical.
- Definir si en la armadura vertical del trasdós se dispone un refuerzo o no.
- Definir un diámetro mínimo para cada posición de armado.

- Fijar un diámetro determinado para cada una de las posiciones.
- Fijar una cuantía mínima de armado.
- Fijar la separación entre barras para cada una de las posiciones.
- Fijar la separación y anchura de los cercos.
- Definir la armadura mínima longitudinal (horizontal) a partir de un porcentaje de la armadura de cálculo principal (vertical). Por defecto se adopta un 25%.

La figura que aparece en la parte superior izquierda se muestra la denominación de las distintas posiciones.

Para configurar el armado en primer lugar se debe seleccionar el módulo para el cual se fijan las condiciones de armado; ello se hace en la casilla dispuesta a tal efecto en la parte superior derecha de la ventana.

<u>*Esperas:*</u> Estas opciones permiten definir para las posiciones correspondientes a la armadura vertical si se desea disponer esperas en la zapata (en este caso se debe seleccionar la opción) o no.

Figura 3.10.2-2: Definición de la disposición de esperas.

<u>*Refuerzos:*</u> En caso de activar esta opción, la armadura vertical del trasdós se desdoblará en dos posiciones, lo que permitirá reducir armadura a una cierta altura del alzado. En caso contrario se dispondrá una única posición de armado.

Figura 3.10.2-3: Configuración del refuerzo de la armadura vertical del trasdós.

Dimensiones de los cercos de cortante: Con el diálogo señalado en la Figura 3.10.2-4 se pueden fijar, para los cercos de cortante, la anchura de los cercos (A) y la separación (D) entre cercos de una misma capa (distancia entre las dos ramas más próximas de dos cercos pertenecientes a la misma capa). En caso de que con la separación y anchura fijadas no sea posible cubrir la cuantía necesaria de cálculo, *CivilCAD3000* advierte de ello al usuario.

Figura 3.10.2-4: Dimensiones de los cercos de cortante.

Diámetros, separaciones y cuantías: En el diálogo señalado en la Figura 3.10.2-5 *CivilCAD3000* permite para cada una de las posiciones, establecer un diámetro mínimo,

fijar un diámetro, considerar una cuantía mínima de armado o fijar una separación entre barras.

Figura 3.10.2-5: Definición de diámetros, separaciones y cuantías.

Finalmente en la parte inferior de la ventana se dispone de una serie de utilidades:

Establecer la configuración actual como la del programa por defecto: Esta opción permite grabar la configuración de armado que se haya definido como configuración por defecto en casos posteriores. De esta forma el usuario puede particularizar las opciones de armado sin necesidad de introducirlas en cada caso.

Recuperar la configuración inicial del programa CivilCAD: Esta opción permite recuperar la configuración de armado que establece *CivilCAD3000* por defecto.

Copiar el módulo seleccionado al resto: Esta opción copia la configuración de armado del módulo seleccionado al resto de módulos.

3.10.3 Orden Despiece de la zapata

Al seleccionar la opción *Despiece de la zapata* aparece en pantalla la ventana de la Figura 3.10.3-1.

Figura 3.10.3-1: Ventana para la configuración del armado de la zapata.

Esta ventana permite definir los criterios con los que se desea que se realice el armado de la zapata del muro. Concretamente,

- Definir si en la armadura superior e inferior de la zapata se dispone un refuerzo o no.
- Definir un diámetro mínimo para cada posición de armado.
- Fijar un diámetro determinado para cada una de las posiciones.
- Fijar una cuantía mínima de armado.
- Fijar la separación entre barras para cada una de las posiciones.
- Fijar la separación y anchura de los cercos.
- Definir la armadura mínima longitudinal a partir de un porcentaje de la armadura de cálculo principal (transversal). Por defecto se adopta un 25%.

La figura que aparece en la parte superior izquierda muestra la denominación de las distintas posiciones del armado.

Para configurar el armado en primer lugar se debe seleccionar el módulo para el cual se fijan las condiciones de armado; ello se hace en la casilla dispuesta a tal efecto en la parte superior derecha de la ventana.

<u>*Refuerzos:*</u> En caso de activar esta opción, la armadura correspondiente de la zapata se desdoblará en dos posiciones, lo que permitirá reducir armadura a una cierta distancia del extremo de la zapata. En caso contrario se dispondrá una única posición de armado.

Figura 3.10.3-2: Definición de la disposición de refuerzos.

Dimensiones de los cercos de cortante: Con el diálogo señalado en la Figura 3.10.3-3 se pueden fijar para los cercos de cortante la anchura de los cercos (A) y la separación (D) entre cercos de una misma capa (distancia entre las dos ramas más próximas de dos cercos pertenecientes a la misma capa). En caso de que con la separación y anchura fijadas no sea posible cubrir la cuantía necesaria de cálculo, *CivilCAD3000* advierte de ello al usuario.

Figura 3.10.3-3: Dimensiones de los cercos de cortante.

Diámetros, separaciones y cuantías: En el diálogo presentado en la Figura 3.10.3-4, *CivilCAD3000* permite, para cada una de las posiciones, establecer un diámetro mínimo, fijar el diámetro, considerar una cuantía mínima de armado o fijar la separación entre barras.

Figura 3.10.3-4: Definición de diámetros, separaciones y cuantías.

Finalmente en la parte inferior de la ventana se dispone de una serie de utilidades:

Establecer la configuración actual como la del programa por defecto: Esta opción permite grabar la configuración de armado que se haya definido como configuración por defecto para ser empelada en casos posteriores. De esta forma el usuario puede particularizar sus opciones de armado sin necesidad de tener que introducirlas en cada nuevo caso.

Recuperar la configuración inicial del programa CivilCAD3000: Esta opción permite recuperar la configuración de armado que establece *CivilCAD3000* por defecto.

Copiar el módulo seleccionado al resto: Esta opción copia la configuración de armado del módulo seleccionado al resto de módulos.

3.10.4 Orden Despiece del tacón

Al seleccionar la opción *Despiece del tacón* aparece en pantalla la ventana de la Figura 3.10.4-1.

Figura 3.10.4-1: Ventana para la configuración del armado del tacón

Esta ventana permite definir los criterios con los que se desea que se genere el armado del tacón del muro. Concretamente, se puede:

- Definir un diámetro mínimo para cada posición de armado.
- Fijar un diámetro determinado para cada una de las posiciones.
- Fijar una cuantía mínima de armado.
- Fijar la separación entre barras para cada una de las posiciones.
- Fijar la separación y anchura de los cercos.
- Definir la armadura mínima longitudinal (horizontal) a partir de un porcentaje de la armadura principal (vertical). Por defecto se propone un 25%.

La figura que aparece en la parte superior izquierda muestra la denominación de las diferentes posiciones.

Para configurar el armado del muro en primer lugar se debe seleccionar el módulo para el cual se fijan las condiciones de armado; ello se hace en la casilla dispuesta a tal efecto en la parte superior derecha de la ventana.

Dimensiones de los cercos de cortante: Con el diálogo señalado en la Figura 3.10.4-2 se pueden fijar para los cercos de cortant, la anchura de los cercos (A) y la separación (D) entre cercos de una misma capa (distancia entre las dos ramas más próximas de dos cercos pertenecientes a la misma capa). En caso de que con la separación y anchura fijadas no sea posible cubrir la cuantía necesaria de cálculo, *CivilCAD3000* advierte de ello al usuario.

Figura 3.10.4-2: Dimensiones de los cercos de cortante.

Diámetros, separaciones y cuantías: En el diálogo señalado en la Figura 3.10.4-3, *CivilCAD3000* permite para cada una de las posiciones establecer un diámetro mínimo, fijar el diámetro, considerar una cuantía mínima de armado o fijar la separación entre barras.

Figura 3.10.4-3: Definición de diámetros, separaciones y cuantías.

Finalmente en la parte inferior de la ventana se dispone de una serie de utilidades:

Establecer la configuración actual como la del programa por defecto: Esta opción permite grabar la configuración de armado que se haya definido como configuración por defecto para ser empleada en casos posteriores. De esta forma el usuario puede particularizar sus opciones de armado sin necesidad de introducirlas en cada caso nuevo.

Recuperar la configuración inicial del programa CivilCAD3000: Esta opción permite recuperar la configuración de armado que establece *CivilCAD3000* por defecto.

Copiar el módulo seleccionado al resto: Esta opción copia la configuración de armado del módulo seleccionado al resto de módulos.

3.11 Orden Configuración

La orden *Configuración* permite fijar determinados criterios de cálculo del muro. Al seleccionar esta opción aparecerá en pantalla la ventana de la Figura 3.11-1.

Figura 3.11-1: Ventana de configuración del cálculo.

A continuación se exponen las diferentes posibilidades de configuración del cálculo.

<u>Secciones de cálculo del alzado:</u> Con esta opción (ver Figura 3.11-2) *CivilCAD3000* permite definir el numero de secciones del alzado en el que se realizarán los cálculos de rotura por flexión, cortante y fisuración. No se permite entrar un número de secciones inferior a tres (3). Además de estas secciones, *CivilCAD3000* considerará secciones de cálculo adicionales en los cambios de capas del terreno, en la cota del nivel freático y en la sección de cambio de espesor del muro en los muros escalonados.

Configuración	×
Secciones de cálculo Número de secciones de cálculo del alzado: Secciones transversales de cálculo por módulo Sección L (tanto por uno) 1 2 3 4 4 5 6 7 7 8 Añadr sección Eliminar sección Eliminar sección Contribución del rozamiento terreno-terreno (Considerar la contribución de rozamiento terreno-terreno (Coeficiente reductor del ángulo de rozamiento en el contacto terreno - terreno :	Empuje pasivo No considerar el empuje pasivo Considerar el empuje pasivo Image: State of the
	приси псерии синскии

Figura 3.11-2: Definición de las secciones de cálculo en el alzado.

<u>Secciones transversales de cálculo</u>: En el diálogo señalado en la Figura 3.11-3 *CivilCAD3000* permite definir las secciones de cálculo.

Figura 3.11-3: Ventana de configuración del cálculo.

Con esta opción el usuario puede definir las secciones transversales del muro en las que se realizarán los cálculos. En muros en que cada módulo presente una sección transversal constante en cuanto a geometría y terreno (coronación y zapata horizontal y terreno en trasdós uniforme longitudinalmente) bastará con definir una sola sección de cálculo; en los casos de altura variable o terreno no uniforme longitudinalmente en el trasdós, el usuario deberá definir las secciones de cálculo que considere representativas.

Las verificaciones a deslizamiento, vuelco y estabilidad global se realizan en las secciones transversales definidas, obteniéndose a partir de ellas un coeficiente de seguridad global del módulo ponderando cada sección por su anchura contributiva.

Figura 3.11-4: Secciones transversales de cálculo de un módulo y anchuras contributivas.

En la verificación del hundimiento, el cálculo se realiza para cada sección transversal definida, adoptándose para la verificación la presión máxima de entre todas las secciones transversales.

Para la obtención de las armaduras de flexión, cortante y fisuración, se realiza el cálculo de las mismas en cada una de las secciones transversales definidas, adoptándose la armadura máxima de las obtenidas en todas ellas.

Para añadir una sección transversal, se debe pulsar el botón *Añadir sección* (ver recuadro en rojo de la Figura 3.11-5) y a continuación definir su posición introduciendo el cociente entre la distancia de la sección al inicio del módulo (lado izquierdo del mismo) respecto a la longitud total del módulo, en tanto por uno (diálogo señalado en verde en la Figura 3.11-5).

Figura 3.11-5: Definición de las secciones transversales de cálculo.

Con el botón Eliminar sección, se borra la última sección.

Componente vertical del empuje activo: En el diálogo señalado en la Figura 3.11-6, *CivilCAD3000* permite definir la forma en la que se debe considerar la componente vertical del empuje activo en los cálculos de vuelco, deslizamiento y hundimiento en el plano vertical situado en el extremo de la zarpa trasera.

Figura 3.11-6: Ventana de configuración del cálculo.

Si la opción está desactivada, *CivilCAD3000* considerará un ángulo de rozamiento terrenoterreno nulo en el plano vertical definido en la Figura 3.11-7 en los cálculos de vuelco, deslizamiento y hundimiento.

En caso contrario, se considerará un coeficiente de rozamiento (δ) en dicho plano cuyo valor será:

$$\delta = k_1 \cdot \varphi \quad (Ex. 3.11 - 1)$$

, siendo

- ϕ Ángulo de rozamiento interno del terreno.
- $\begin{array}{ll} k_1 & \mbox{Coeficiente reductor del ángulo de rozamiento en el contacto terreno-terreno, cuyo} \\ & \mbox{valor define el usuario en la casilla} (0 \le k_1 \le 1) \mbox{ indicada en la Figura 3.11-8.} \end{array}$

Figura 3.11-8: Definición del coeficiente reductor del ángulo de rozamiento terrenoterreno.

La aplicación del coeficiente de rozamiento comportará la reducción del empuje horizontal y la incorporación de la componente vertical debida al rozamiento.

Empuje pasivo: En el diálogo correspondiente al empuje pasivo (ver Figura 3.11-9) *CivilCAD3000* permite definir si se considera o no el empuje pasivo, y, en caso de considerarse, fijar cómo calcularlo.

Figura 3.11-9: Diálogo de configuración del empuje pasivo.

Si no se desea considerar la contribución del empuje pasivo del terreno situado delante del muro se debe seleccionar la opción *No considerar el empuje pasivo*; en caso contrario se debe seleccionar la opción *Considerar el empuje pasivo*.

En este último caso se activaran las opciones de configuración del cálculo del empuje pasivo (zona del recuadro en rojo de la Figura 3.11-10).

Figura 3.11-10: Opciones de configuración del empuje pasivo.

Se debe seleccionar en este caso entre las opciones A, B o C. La opción A incluirá la acción del empuje pasivo en el cálculo considerando que el terreno de delante del muro coincide con la superficie del mismo; en la opción B se considerará a efectos del cálculo

del empuje pasivo que el terreno se sitúa a la cota de la cara superior de la zapata; finalmente la opción C considerará a efectos del cálculo del empuje pasivo que no existe terreno delante del muro por encima de la cara inferior de la zapata (esta opción solo tiene sentido en el caso de haberse definido un tacón en la base del muro).

Finalmente, *CivilCAD3000* ofrece la posibilidad de considerar un coeficiente reductor del empuje pasivo, cuyo valor debe estar comprendido entre 0 y 1; este coeficiente se aplica tanto a la componente horizontal como a la componente vertical del empuje pasivo.

<u>Método de distribución de tensiones</u>: El diálogo señalado en el recuadro en rojo de la Figura 3.11-11 permite seleccionar el tipo de ley de distribuciones de tensiones a considerar en el terreno. En las normativas española y europea, *CivilCAD3000* permite seleccionar entre una distribución de presiones uniforme (presión constante) o bien una distribución de presiones lineal (triangular o trapecial si está toda la zapata comprimida). En el primer caso se debe seleccionar la opción *Uniforme (Método de la zapata equivalente)*, mientras que en el segundo caso se debe seleccionar la opción *Lineal*.

Figura 3.11-11: Diálogo de configuración de la ley de distribución de tensiones.

En el caso de la normativa americana aparece una tercera opción, que es considerada en la normativa AASHTO, que considera una distribución uniforme si el terreno de cimentación no es roca es decir, es granular o cohesivo y una distribución lineal si es roca. En este caso *CivilCAD3000* aplicará una o otra distribución en función del tipo de terreno en el que se cimente la estructura y según la clasificación del mismo que se haya definido en el diálogo del terreno.

Figura 3.11-12: Diálogo de configuración de la ley de distribución de tensiones para la normativa americana (AASHTO).

4 ANÁLISIS

Una vez se ha definido en la opción *Entrada* la geometría y las acciones que actúan sobre el muro se puede realizar el cálculo del muro. Para ello se debe activar el botón *Calcular todo* (ver Figura 4-1). Al apretar esta opción se realizaran los cálculos correspondientes a los distintos estados límite que deben verificarse:

- Deslizamiento zapata-terreno.
- Vuelco rígido.
- Hundimiento del terreno.
- Rotura por flexión (dimensionamiento de la armadura).
- Fisuración (dimensionamiento de la armadura).
- Rotura por cortante (dimensionamiento de la armadura).
- Deformaciones.
- Estabilidad global.
- Generación del armado.

Figura 4-1: Botón para el cálculo del muro.

Una vez ejecutado el cálculo en el diálogo de Verificación (ver Figura 4-2) aparecerá el diagnóstico de verificación de cada una de las comprobaciones indicando si Cumple (verifica) o No Cumple (no verifica).

Figura 4-2: Diálogo de Verificación.

La orden *Análisis* permite desplegar las opciones de análisis de las distintas comprobaciones para consultar los resultados parciales de cada una de ellas. Concretamente se ofrecen las siguientes opciones (ver Figura 4-3):

- Esfuerzos.
- Deslizamiento.
- Vuelco.
- Estabilidad global.
- Hundimiento del terreno.
- Rotura por flexión.
- Fisuración.
- Rotura por cortante.
- Deformaciones.
- Generación del armado.
- Mediciones.

Figura 4-3: Opciones de la orden Análisis.

En los siguientes apartados se explica detalladamente cada una de estas opciones.

4.1 Orden Esfuerzos

La orden Esfuerzos permite consultar el valor característico de las acciones que actúan sobre el alzado y la zapata del muro. Más concretamente esta opción permite consultar:

- Las acciones (cargas repartidas y cargas puntuales) que actúan sobre el alzado y la zapata del muro.
- La resultante (fuerza horizontal, vertical y momento) respecto al centro de la zapata debido a las acciones anteriores
- Los esfuerzos axiles, cortantes y flectores en el alzado del muro (esfuerzos por unidad de anchura).

Figura 4.1-1: Ventana de consulta de esfuerzos.

Los esfuerzos en la zapata no se muestran debido a que dependen de la distribución de tensiones en el terreno, la cual depende de la totalidad de las acciones.

Los esfuerzos se pueden consultar a través de una ventana de consulta con la orden *Gráfica de esfuerzos* que se despliega en el menú principal al seleccionar la opción *Esfuerzos*, o bien mediante un informe que se genera al seleccionar la orden *Listado*. Ambas opciones se exponen en los apartados siguientes.

4.1.1 Gráfica de esfuerzos

Al seleccionar la opción *Esfuerzos/Gráfica* de esfuerzos aparece en pantalla la ventana de la Figura 4.1.1-1.

Es	fuerzos carac Módulo 1	terísticos Sección Considerar el nive	l freático
	-	Acción	Mostrar
		Peso propio muro	
		Peso de las tierras en el trasdós	
		Peso de las tierras en la puntera	
		Empuje activo de las tierras del tasdós	
	Acciones	Empuje pasivo de las tierras en la puntera	v
	permanentes	Sobrecarga permanente en el trasdós. Empuje	
		Sobrecarga permanente en el trasdós. Acción vertical	
		Carga permanente en coronación del muro	
		Carga en faja. Empuje	
		Carga en faja. Acción vertical	
		Sobrecarga de tráfico. Empuje	
		Sobrecarga de tráfico. Acción vertical	
	Acciones	Carga de tráfico en coronación del muro	
	variables	Viento	
		Nivel freático	
	Acciones	Sismo	
	accidentales	Impacto de vehículo	
		Aplicar Aceptar Ca	ancelar

Figura 4.1.1-1: Ventana para la consulta de los esfuerzos característicos.

En este diálogo se debe seleccionar el módulo del cual se quieren consultar los esfuerzos, así como la sección transversal de cálculo en la que se quieren obtener (recuérdese que las secciones transversales de cálculo se han definido en la opción *Entrada/Configuración*).

Así mismo se debe seleccionar la acción o acciones que se desea que se muestren en pantalla. En caso de que se seleccione más de una acción, los resultados que se muestran corresponden a la suma de los esfuerzos de todas las acciones. Los valores mostrados corresponden a los valores característicos, es decir, no mayorados.

Adicionalmente, para aquellas acciones en que su efecto dependa de la presencia del nivel freático (peso y empuje de las tierras y sismo) se debe activar la casilla *Considerar el nivel freático* si se desea que los esfuerzos mostrados incluyan el efecto del agua; en caso contrario no hay que marcarla.

Como ya se ha dicho anteriormente, los valores mostrados corresponden a:

- Las acciones (cargas repartidas y cargas puntuales) que actúan sobre el alzado y la zapata del muro.
- La resultante (fuerza horizontal, vertical y momento) respecto al centro de la zapata debido a las acciones anteriores.
- Los esfuerzos axiles, cortantes y flectores en el alzado del muro (esfuerzos por unidad de anchura).

Figura 4.1.1-1: Esfuerzos, acciones y resultante.

4.1.2 Informe

Esta opción permite obtener un documento con las gráficas de esfuerzos de todas las acciones que se han descrito en el apartado anterior. Al seleccionar esta opción aparecerá en pantalla el diálogo que aparece en la Figura 4.1.2-1 en el que se debe introducir el nombre del documento y el formato del mismo.

Listado esfuerzos	
Guardar listado como Nombre del archivo :	≿a3-Listado esfuerzos-Modulo 1 Documentos Microdost Word 97-2003(*.doc) *.doc ▼ Examinar Aceptar Cancelar

Figura 4.1.2-1: Ventana de informe de esfuerzos.

Para seleccionar el tipo de formato del archivo a generar debe apretarse el botón señalado en la Figura 4.1.2-2 para desplegar las distintas opciones de formato disponibles.

=	Listado esfuerzos		
_	Guardar listado como		
	Nombre del archivo :	ea3-Listado esfuerzos-Modulo 1	
		Documentos Microdost Word 97-2003(*.doc) *.doc	
		Archivos ANSI (*.txt) *.txt	
		Archivos TX (*.txt) *.txt	
		Archivos TX Control (*.txt) *.txt	
		Archivos HTML (*.) *. Archivos PTE (* rtf) * rtf	n II
		Archivos Unicode (*.txt)[*.txt]	
4		Archivos TX Unicode (*.txt) [*.txt]	
		Archivos TX Control Unicode (*. txt) *. txt	
		Documentos Microdost Word 97-2003(*.doc) *.doc	
		Archivos XML(*.xml) *.xml	
_		Archivos CSS(*.css) *.css	
Γ		Archivos Adode PDF(*.pdf) *.pdf	
		Archives Adode PDE/A(* pdf)[* pdf]	
		Archivos Audue For /A(.pur/j .pur/	

Figura 4.1.2-2: Opciones de formato para el archivo del informe.

Por defecto el documento se guardará en el mismo directorio en el que está el archivo del muro (directorio de trabajo). No obstante, con el botón *Examinar* se podrá seleccionar una ruta alternativa en la que se desea guardar el documento.

4.2 Orden Deslizamiento

Con la orden *Deslizamiento* se pueden consultar los resultados del cálculo a deslizamiento para cada una de las situaciones. Los resultados se pueden consultar directamente por pantalla (opción *Consulta*) o bien sacando un informe de los resultados (opción *Informe*).

Para cada situación y combinación se proporcionan las fuerzas estabilizadores y las fuerzas desestabilizadoras correspondientes a la hipótesis más desfavorable para cada una de las acciones así como los valores totales a partir de los cuales se realiza la verificación a deslizamiento. El formato concreto de la salida de los resultados depende de la normativa con la que se está trabajando.

4.2.1 Consulta

En este apartado se explica para cada una de las normativas los resultados que proporciona *CivilCAD3000* para el cálculo a deslizamiento.

4.2.1.1 Normativa española

Al seleccionar la opción *Consulta* aparece en pantalla la ventana de la Figura 4.2.1.1-1. En la parte superior izquierda de la ventana el usuario debe seleccionar el módulo del cual se quieren consultar los resultados (recuadro en rojo de la Figura 4.2.1.1-1); una vez

seleccionado el módulo se debe ejecutar el cálculo activando el botón *Calcular* situado en la parte inferior izquierda de la ventana (recuadro verde de la Figura 4.2.1.1-1)

	M	ódulo	S	ituación		Combinación	E.S.	F.S. admisible	Observaci
1 🗸		Persistente		Cuasi perm	Cuasi permanente		0.	0 Pendiente	
	· · · · · · · · · · · · · · · · · · ·		Persistent	e	Característ	ica	0.0	0.	0 Pendiente
			Accidenta		Sísmica		0.0	0.	0 Pendiente
			Accidenta		Impacto		0.0	0.	0 Pendiente
Consulta de la s	situación y combinación								
				F estab	ilizadoras				
Situación Persistente		F normal	F roz.	F horiz, estab.	F desest.				
Combinación Cuasi permanente 🗨			(†)	(†)		(†)			
A			(1)	(.)	(1)	(1)			
	Peso propio muro		0.000	0.000	0.000	0.000			
	Peso tierras trasdos		0.000	0.000	0.000	0.000			
	Peso terras puntera		0.000	0.000	0.000	0.000			
A	Empuje activo de las tierras trasdos		0.000	0.000	0.000	0.000			
permanentes	Empuje pasivo de las derras en	Empurie	0.000	0.000	0.000	0.000	Euerza de rozamiento		0 .
	Sobrecarga permanente en trasdós	Acción vertical	0.000	0.000	0.000	0.000			- t
	Carga permapente en coronació	n de muro	0.000	0.000	0.000	0.000	Fuerza horizontal estabilizadora		0 t
	Carga permanente en coronacio	Empuie	0.000	0.000	0.000	0.000	Adherencia :		0 t
	Carga en faja	Acción vertical	0.000	0.000	0.000	0.000			
		Empuje	0.000	0.000	0.000	0.000	Fuerza estabilizadora total:	a total:	0 t
	Sobrecarga de trafico en trasdos	Acción vertical	0.000	0.000	0.000	0.000	Fuerza establizadora total.		
Acciones	Carga de tráfico en coronación	Acción vertical 0.000 0.000 0.000 0.000 rasdós Empuje 0.000 0.000 0.000 Fuerza estabilizadora tota Acción vertical 0.000 0.000 0.000 0.000 Fuerza estabilizadora tota oronación de muro 0.000 0.000 0.000 0.000 0.000	_						
variables	Viento		0.000	0.000	0.000	0.000	Fuerza desestabiliza	dora:	U t
Acciones variables	Nivel freático		0.000	0.000	0.000	0.000			
Acciones	Sismo		0.000	0.000	0.000	0.000	Factor de seguridad :		U
accidentales	s Impacto		0.000	0.000	0.000	0.000	Factor de seguridad a	admisible :	0
	Total		0.000	0.000	0.000	0.000	r detor de beganddar		
servaciones									
									-
									-

Figura 4.2.1.1-1: Ventana de consulta de los resultados de deslizamiento con la normativa española.

Una vez ejecutado el cálculo se mostrarán en pantalla los resultados; en la parte superior derecha se da el resultados para cada combinación y situación analizadas, que para la normativa española son las siguientes:

- Situación persistente:
 - Combinación cuasi permanente.
 - Combinación característica.
- Situación accidental:
 - Combinación sísmica.
 - Combinación de impacto de vehículos.

En el caso de que no exista acción sísmica o la acción de impacto, no se mostrará las combinaciones correspondientes.

Tal como se ha mencionado, el resumen de resultados se muestra en la parte superior derecha de la ventana (ver recuadro en rojo de la Figura 4.2.1.1-2). Para cada situación se proporciona el Factor de seguridad calculado (F.S.), el Factor de seguridad admisible (F.S.

admisible) y el resultado de la verificación; en caso de que se cumpla la verificación (FS>FS admisible) aparecerá la palabra *Cumple* en color verde, y en caso contrario *No cumple* en color rojo.

Recuérdese que el Factor de Seguridad se define como el cociente entre las fuerzas estabilizadoras (se oponen al deslizamiento) y las fuerzas desestabilizadoras (las que provocan el deslizamiento).

$$FS = \frac{F_{estabilizadora}}{F_{desestabilizadora}}$$
(Ex. 4.2.1.1 - 1)

1		Persistent Persistent Accidental	ie ie	Cuasi perma Característi Sísmica	ca ca	2.019 1 2.019 1	.500 Cumple .300 Cumple	Vacio
ción y combinación		Persistent Accidental Accidental	e	Característi Sísmica	ca	2.019 1	.300 Cumple	
ción y combinación		Accidental	l	Sísmica				
ción y combinación		Accidental		Local Control of the Second		1.086 1	.100 No cum	ole
ción y combinación		— If the set of the light	1	Impacto		2.022 1	.100 Cumple	
		-						
Situación Persistente			F estab	F estabilizadoras				
			E roz.	E horiz, estab	F desest.			
Combinación Cuasi permanente		(*)	(4)	(+)	(*)			
		(1)	(1)	(1)	(1)			
Peso propio muro		216.7	78.9	0.0	0.0			
Peso tierras trasdós		450.0	163.8	0.0	0.0			
Peso tierras puntera		9.0	3.3	0.0	0.0			
Empuje activo de las tierras trasdos		2.1	0.8	0.0	122.2			
Empuje pasivo de las tierras en puntera		0.0	0.0	0.0	0.0	Euerza de rozamiento :	246,700	1
Sobrecarga permanente en trasdós	Empuje	0.0	0.0	0.0	0.0	Fuerza de rozamiento :	240.708	t
Acción		0.0	0.0	0.0	0.0	Fuerza horizontal estabilizadora :	: 0	t
Carga permanente en coronació Carga en faja	on de muro	0.0	0.0	0.0	0.0	Adherencia :	0	+
	Empuje	0.0	0.0	0.0	0.0		-	
	Accion vertical	0.0	0.0	0.0	0.0	Fuerza estabilizadora total:	0.46 700	
brecarga de tráfico en trasdós	Empuje	0.0	0.0	0.0	0.0		246.708	t
Carga de tráfico en coronación	Accion vertical	0.0	0.0	0.0	0.0			
Viento	rue muro	0.0	0.0	0.0	0.0	2.022 1.100 Cump Fuerza de rozamiento : 246.708 Fuerza horizontal estabilizadora : 0 Adherencia : 0 Fuerza estabilizadora total: 246.708 Fuerza desestabilizadora: 122.21 Factor de seguridad : 2.0186 Factor de seguridad : 1.5	122.214	t
Nivel freático		0.0	0.0	0.0	0.0			
Sismo		0.0	0.0	0.0	0.0	Factor de seguridad :	2.01865	
Impacto		0.0	0.0	0.0	0.0		1.5	
Total		677.8	246.7	0.0	122.2	Factor de seguridad admisible :	1.5	
ł		fon Cuasi permanente Peso propio muro Peso tierras trasdós Peso tierras trasdós Peso tierras puntera Empuje activo de las tierras en puntera ecarga permanente en trasdóg Carga en faja Carga en faja Carga de tráfico en trasdós Carga de tráfico en coronación de muro Viento Nivel freático Sismo Impacto Total	for Cuasi permanente (t) Peso propio muro 216.7 Peso tierras trasdós 450.0 Peso tierras puntera 9.0 Empuje pasivo de las tierras trasdós 2.1 Empuje pasivo de las tierras en puntera 0.0 ecarga permanente en trasdós Empuje Carga en faja Empuje Orecarga de tráfico en trasdós Empuje Carga de tráfico en trasdós Empuje Carga de tráfico en coronación de muro 0.0 Nivel freático 0.0 Sismo 0.0 Impacto 0.0 Total 677.8	Peso propio muro 216.7 78.9 Peso tierras trasdós 450.0 163.8 Peso tierras puntera 9.0 3.3 Empuje activo de las tierras trasdós 2.1 0.0 Empuje activo de las tierras en puntera 0.0 0.0 ecarga permanente en trasdós Empuje 0.0 0.0 Carga en faja Empuje 0.0 0.0 Carga de tráfico en trasdós Empuje 0.0 0.0 Carga de tráfico en coronación de muro 0.0 0.0 0.0 Carga de tráfico en coronación de muro 0.0 0.0 0.0 Nivel freático 0.0 0.0 0.0 Sismo 0.0 0.0 0.0 Imposito 0.0 0.0 0.0	Peso propio muro 216.7 78.9 0.0 Peso tierras trasdós 450.0 163.8 0.0 Peso tierras trasdós 450.0 163.8 0.0 Empuje activo de las tierras trasdós 2.1 0.8 0.0 Empuje pasivo de las tierras trasdós 2.1 0.8 0.0 carga permanente en trasdós Empuje 0.0 0.0 0.0 carga permanente en coronación de muro 0.0 0.0 0.0 0.0 carga en faja Empuje 0.0 0.0 0.0 0.0 0.0 carga de tráfico en trasdós Empuje 0.0 <td>Image: constraint for the set propio muro (t) (t) (t) (t) (t) (t) Peso propio muro 216.7 78.9 0.0 0.0 Peso tierras trasdós 450.0 163.8 0.0 0.0 Peso tierras puntera 9.0 3.3 0.0 0.0 Empuje pasivo de las tierras trasdós 2.1 0.8 0.0 0.0 ecarga permanente en trasdós Empuje 0.0 0.0 0.0 0.0 Carga en faja Empuje 0.0 0.0 0.0 0.0 0.0 Carga en faja Empuje 0.0 0.0 0.0 0.0 0.0 Carga en faja Empuje 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Carga en faja Empuje 0.0</td> <td>fin Cuasi permanente (t) (t)</td> <td>Image: constraint of the seguridad admisible : (t) (t)<!--</td--></td>	Image: constraint for the set propio muro (t) (t) (t) (t) (t) (t) Peso propio muro 216.7 78.9 0.0 0.0 Peso tierras trasdós 450.0 163.8 0.0 0.0 Peso tierras puntera 9.0 3.3 0.0 0.0 Empuje pasivo de las tierras trasdós 2.1 0.8 0.0 0.0 ecarga permanente en trasdós Empuje 0.0 0.0 0.0 0.0 Carga en faja Empuje 0.0 0.0 0.0 0.0 0.0 Carga en faja Empuje 0.0 0.0 0.0 0.0 0.0 Carga en faja Empuje 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Carga en faja Empuje 0.0	fin Cuasi permanente (t) (t)	Image: constraint of the seguridad admisible : (t) (t) </td

Figura 4.2.1.1-2: Diálogo resumen de verificaciones para el módulo seleccionado.

En la parte central de la ventana el usuario puede consultar los resultados detallados para cada una de las situaciones y combinaciones; los valores mostrados corresponden a la hipótesis más desfavorable. Para consultar los resultados de una combinación concreta se debe seleccionar en el diálogo señalado en el recuadro rojo de la Figura 4.2.1.1-3 la situación y combinación a analizar.

	м	ódulo	Sit	tuación		Combinación		E.S.	E.S. admisible	Obser	vació
	1	-	Persistente	2	Cuasi permi	anente		2.019	1.50	0 Cumple	Tucio
	-		Persistente	2	Característi	ca		2.019	1.30	0 Cumple	
			Accidental		Sísmica			1.086	1.10	0 No cum	ple
			Accidental		Impacto			2.022	1.10	0 Cumple	
Consulta de la	situación y combinación										
			_	F estab	ilizadoras						
Situ	lación Persistente	-	F normal	F roz.	F horiz. estab.	F desest.					
Comb	inación Cuasi permanente		(t)	(t)	(t)	(t)					
	Peso propio muro		216.7	78.9	0.0	0.0					
	Peso tierras trasdós		450.0	163.8	0.0	0.0					
	Peso tierras puntera		9.0	3.3	0.0	0.0					
	Empuje activo de las tierras	trasdós	2.1	0.8	0.0	122.2					
Acciones	Empuje pasivo de las tierras er	n puntera	0.0	0.0	0.0	0.0					
permanentes	Sobrecarga permanente en tración	Empuje	0.0	0.0	0.0	0.0	Fuerza d	le rozamiento	(1)	246.708	t
	Sobrecarga permanente en trasdos	Acción vertical	0.0	0.0	0.0	0.0	Euerza h	orizontal est	abilizadora :	0	
	Carga permanente en coronació	in de muro	0.0	0.0	0.0	0.0				-	÷.
	Carga en faja	Empuje	0.0	0.0	0.0	0.0	Adheren	ca:		U	t
		Acción vertical	0.0	0.0	0.0	0.0					_
	Sobrecarga de tráfico en trasdós	Empuje	0.0	0.0	0.0	0.0	Fuerza	estabilizadora	a total:	246.708	t
Acciones	-	Acción vertical	0.0	0.0	0.0	0.0					
variables	Carga de trafico en coronacion	n de muro	0.0	0.0	0.0	0.0	Fuerza (desestabiliza	dora:	122.214	t
	Viento		0.0	0.0	0.0	0.0					
Accience	Signo		0.0	0.0	0.0	0.0	Eactor d	e seguridad -		2.01865	
accidentales	Impacto		0.0	0.0	0.0	0.0	i actor a	c segundad .			
	Total		677.8	246.7	0.0	122.2	Factor d	e seguridad a	admisible :	1.5	
oservaciones	El módulo 1 no cumple a deslizamien El módulo 2 no cumple a deslizamien	nto para: Combi nto para: Combi	nación sísmica nación sísmica								*

Figura 4.2.1.1-3 Selección de la situación y combinación que se desea consultar.

Para cada acción se proporcionan los siguientes resultados:

- La fuerza normal a la base de la zapata (*F normal*).
- La fuerza de rozamiento que se opone al deslizamiento (F roz).
- La fuerza horizontal estabilizadora (*F horiz. estab.*) que corresponde a las fuerzas horizontales que se oponen al deslizamiento (empuje pasivo y fuerzas horizontales actuando en coronación de muro).
- La fuerza desestabilizadora (*F desest*.).

Los valores presentados corresponden a los valores mayorados por el coeficiente de mayoración de acciones, afectados por el coeficiente de combinación y calculados para la totalidad del módulo.

En el lado derecho de la ventana se muestra el total de las fuerzas estabilizadores, que están compuestas por la *Fuerza de rozamiento*, las *Fuerzas horizontales estabilizadoras* y la fuerza de adherencia en el contacto zapata-terreno (*Adherencia*), y la *Fuerza desestabilizadora* total. Finalmente se muestra el *Factor de seguridad* obtenido y el *Factor de seguridad admisible*.

Finalmente en la parte inferior encontramos la casilla *Observaciones*, en la que se muestran los mensajes correspondientes a los incumplimientos de la verificación de deslizamiento de todos los módulos del muro. Se puede ver así de forma rápida en que módulos no se verifica la comprobación del deslizamiento.

4.2.1.2Normativa europea

Al seleccionar la opción *Consulta* aparece en pantalla la ventana de la Figura 4.2.1.2-1. En la parte superior izquierda de la ventana el usuario debe seleccionar el módulo del cual se quieren consultar los resultados (recuadro en rojo de la Figura 4.2.1.2-1); una vez seleccionado se debe ejecutar el cálculo activando el botón *Calcular* situado en la parte inferior izquierda de la ventana (recuadro verde de la Figura 4.2.1.2-1)

Sandados derm	M	ódulo	Sit	tuación		Combinación	ES ES	admisible	Observación
	1	-	Persistent	e	Enfoque 1		0.0	0.0	Pendiente
	L=		Accidental	_	Sísmica		0.0	0.0	Pendiente
			Accidental		Impacto		0.0	0.0	Pendiente
Consulta de la s	situación y combinación		-						
				F estab	oilizadoras				
Situ	ación Persistente	-	F normal	F roz.	F horiz, estab,	F desest.			
Comb	inación Enfoque 1	-	(†)	(†)	(†)	(†)			
		A	0.000	0.000	(1)	(.)			
	Peso propio muro		0.000	0.000	0.000	0.000			
	Peso tierras trasdos		0.000	0.000	0.000	0.000			
	Empuie active de las tierras	radás	0.000	0.000	0.000	0.000			
Accience	Empuje activo de las tierras er		0.000	0.000	0.000	0.000			
nermanentes	Ellipuje pasivo de las deltas el	Empurie	0.000	0.000	0.000	0.000	Euerza de rozamiento :	0	
permanences	Sobrecarga permanente en trasdós	Acción vertical	0.000	0.000	0.000	0.000			t
	Carga permapente en coronació	in de muro	0.000	0.000	0.000	0.000	Fuerza horizontal estabiliz	zadora : 0	t
	edige permanente en coronado	Empuie	0.000	0.000	0.000	0.000	Adherencia :	C	t
	Carga en faja	Acción vertical	0.000	0.000	0.000	0.000			
		Empuie	0.000	0.000	0.000	0.000	Euerze estabilizadore tot	at 0	t
	Sobrecarga de trafico en trasdos	Acción vertical	0.000	0.000	0.000	0.000	i uciza estabilizadora tota	ai	
Acciones	Carga de tráfico en coronación	de muro	0.000	0.000	0.000	0.000			
variables	Viento		0.000	0.000	0.000	0.000	Fuerza desestabilizadora	e U	t
	Nivel freático		0.000	0.000	0.000	0.000			
Acciones	Sismo		0.000	0.000	0.000	0.000	Factor de seguridad :	C	
accidentales	Impacto		0.000	0.000	0.000	0.000	Factor de seguridad admi	sible : 0	
	Total		0.000	0.000	0.000	0.000	r actor ac ocganada admi		
servaciones									
									*
									-

Figura 4.2.1.2-1: Ventana de consulta de los resultados de deslizamiento con la normativa europea.

Una vez ejecutado el cálculo se mostraran en pantalla los resultados; en la parte superior derecha se muestra el resumen de resultados para las distintas combinaciones y situaciones, que para la normativa europea son las siguientes:

- Situación persistente (Enfoque 1, 2 o 3).
- Situación accidental:
 - Combinación sísmica.
 - Combinación de impacto de vehículos.

En el caso de que no exista acción sísmica o la acción de impacto, no se mostrará las combinaciones correspondientes.

Como se ha mencionado, el resultando se muestra en la parte superior derecha de la ventana (ver recuadro en rojo de la Figura 4.2.1.2-2). Para cada situación se proporciona el Factor de seguridad calculado (F.S.), el Factor de seguridad admisible (F.S. admisible) y el resultado de la verificación; en caso de que se cumpla la verificación (FS>FS admisible) aparecerá la palabra *Cumple* en color verde, y, en caso contrario, *No cumple* en color rojo.

Recuérdese que el Factor de Seguridad se define como el cociente entre las fuerzas estabilizadoras (las que se oponen al deslizamiento) y las fuerzas desestabilizadoras (las que provocan el deslizamiento).

$$FS = \frac{F_{estabilizadora}}{F_{desestabilizadora}}$$
(Ex. 4.2.1.2 - 1)

Los Eurocódigos no definen explícitamente ningún factor de seguridad global FS, ya que introducen la seguridad mayorando las acciones y aplicando los factores de resistencia R (γ_R), por lo que la condición que debe verificarse es que la Fuerza estabilizadora sea superior a la desestabilizadora, lo que equivale a considerar un Factor admisible igual a la unidad (FSadmisible = 1,0), que es el valor que se muestra en el diálogo. Para mayor detalle consultar el Manual Técnico del módulo Muros.

suitados del m	odulo M	ódulo		ituación		Combinación	E S E S administ	ble Observació
	1		Persistent	P	Enfoque 1	Combinación	0.724 1.	000 No cumple
	*		Accidenta	1	Sísmica		1.009 1.	000 Cumple
			Accidenta	I	Impacto		1.757 1.	000 Cumple
onsulta de la s	situación y combinación		L					
				F estab	oilizadoras			
Situ	ación Persistente	-	F normal	E roz	E horiz estab	F desest.		
Comb	inación Enfoque 1	-	(*)	(4)	(4)	(*)		
			(1)	(0)	(0	(0		
	Peso propio muro		216.7	57.4	0.0	0.0		
	Peso tierras trasdós		450.0	119.1	0.0	0.0		
	Peso terras puntera		9.0	2.4	0.0	0.0		
	Empuje activo de las tierras	trasdos	2.9	0.8	0.0	219.1		
Acciones	Empuje pasivo de las tierras el	n puntera	0.0	0.0	0.0	0.0	Euorza do rozamionto i	170 679
Jermanentes	Sobrecarga permanente en trasdós	Empuje	0.0	0.0	0.0	0.0	Fuerza de rozamiento :	1/9.070 t
	Caraa parmapanta an caranaci	Accion vertical	0.0	0.0	0.0	0.0	Fuerza horizontal estabilizadora :	0 t
	Carga permanente en coronacio	Emourie	0.0	0.0	0.0	0.0	Adherencia :	0 t
	Carga en faja	Acción vertical	0.0	0.0	0.0	0.0		
		Empurie	0.2	0.0	0.0	29.1	-	179.678 t
	Sobrecarga de tráfico en trasdós	Acción vertical	0.0	0.0	0.0	0.0	Fuerza estabilizadora total:	1/3.0/0 (
Acciones	Carga de tráfico en coronación	de muro	0.0	0.0	0.0	0.0		
variables	Viento		0.0	0.0	0.0	0.0	Fuerza desestabilizadora:	248.24 t
	Nivel freático		0.0	0.0	0.0	0.0		
Acciones	Sismo		0.0	0.0	0.0	0.0	Factor de seguridad :	0.723808
accidentales	Impacto		0.0	0.0	0.0	0.0	Easter de esquridad admisible :	1
	Total		678.8	179.7	0.0	248.2	Pactor de segundad admisible :	-
servaciones	El módulo 1 no cumple a deslizamie El módulo 2 no cumple a deslizamie	nto para: Enfoqu nto para: Enfoqu	ue 1 ue 1					A

Figura 4.2.1.2-2: Diálogo resumen de verificaciones para el módulo seleccionado.

En la parte central de la ventana el usuario puede consultar los resultados detallados para cada una de las situaciones y combinaciones; los valores mostrados corresponden a la hipótesis más desfavorable. Para elegir una combinación concreta a analizar se debe seleccionar en el diálogo señalado en el recuadro rojo de la Figura 4.2.1.2-3 la situación y combinación deseada.

	M	lódulo	Sit	tuación		Combinación	F.S.	F.S. admisible	Observ	vaciór
	1		Persistente	2	Enfoque 1		0.724	1.000	No cump	le
			Accidental		Sísmica		1.009	1.000) Cumple	
			Accidental		Impacto		1.757	1.000) Cumple	
onsulta de la s	situación y combinación									
				F estab	ilizadoras					
Situ	ación Persistente	-	F normal	F roz.	F horiz. estab.	F desest.				
Comb	inación Enfoque 1		(t)	(t)	(t)	(t)				
	Peso propio muro		216.7	57.4	0.0	0.0				
	Peso propio maro Reso tierras trasdós		450.0	119.1	0.0	0.0				
	Peso tierras nuntera		9.0	2.4	0.0	0.0				
	Empuie activo de las tierras	trasdós	2.9	0.8	0.0	219.1				
Acciones	Empuje pasivo de las tierras e	n puntera	0.0	0.0	0.0	0.0				
permanentes		Empuie	0.0	0.0	0.0	0.0	Fuerza de rozamiento	o:	179.678	+
	Sobrecarga permanente en trasdós	Acción vertical	0.0	0.0	0.0	0.0	Every herizentel est	-		
	Carga permanente en coronacio	ón de muro	0.0	0.0	0.0	0.0	Fuerza nonzontal est			t
	Course of City	Empuje	0.0	0.0	0.0	0.0	Adherencia :)	t
	Carga en taja	Acción vertical	0.0	0.0	0.0	0.0				
	Sabracaraa da tráfico on trandéo	Empuje	0.2	0.0	0.0	29.1	Euerza estabilizador	a total:	179.678	t
	Sobrecarga de tranco en trasdos	Acción vertical	0.0	0.0	0.0	0.0				
variables	Carga de tráfico en coronación	n de muro	0.0	0.0	0.0	0.0			249.24	+
Vanabieb	Viento		0.0	0.0	0.0	0.0	Fuerza desestabiliza	idora:	210.21	· ·
	Nivel freático		0.0	0.0	0.0	0.0			722000	
Acciones	Sismo		0.0	0.0	0.0	0.0	Factor de seguridad	:	1.723808	
accidentales	Impacto		0.0	0.0	0.0	0.0	Factor de seguridad	admisible :	1	
	Total		678.8	179.7	0.0	248.2	-			
servaciones	El módulo 1 po cumple a deslizamie	nto para: Enfog	ue 1							
	El módulo 2 no cumple a desizamie	nto para: Enfog	ue 1							^
	En nodalo Eno campie a debizante	nto parar Enroq								-

Figura 4.2.1.2-3: Selección de la situación y combinación que se desea consultar.

Para cada acción se proporcionan los siguientes resultados:

- La fuerza normal a la base de la zapata (*F normal*).
- La fuerza de rozamiento que se opone al deslizamiento (F roz).
- La fuerza horizontal estabilizadora (*F horiz. estab.*), que corresponde a las fuerzas horizontales que se oponen al deslizamiento (empuje pasivo y fuerzas horizontales actuando en coronación de muro).
- La fuerza desestabilizadora (*F desest*.).

Los valores presentados corresponden a los valores mayorados por el coeficiente de mayoración de acciones, afectados por el coeficiente de combinación y por el coeficiente R de minoración de la resistencia y calcuilados para la totalidad del módulo.

En el lado derecho de la ventana se muestra el total de las fuerzas estabilizadoras compuestas por la *Fuerza de rozamiento*, las *Fuerzas horizontales estabilizadoras* y la fuerza de adherencia en el contacto zapata-terreno (*Adherencia*), y la *Fuerza*

desestabilizadora total. Finalmente se muestra el *Factor de seguridad* obtenido y el *Factor de seguridad admisible*.

Finalmente, en la parte inferior encontramos la casilla *Observaciones* en la que se muestran los mensajes correspondientes a los incumplimientos de la verificación de deslizamiento de todos los módulos del muro. Se puede ver así de forma rápida en que módulos no se verifica la comprobación del deslizamiento.

4.2.1.3 Normativa americana

Al seleccionar la opción *Consulta* aparece en pantalla la ventana de la Figura 4.2.1.3-1. En la parte superior izquierda de la ventana el usuario debe seleccionar el módulo del cual se quieren consultar los resultados (recuadro en rojo de la Figura 4.2.1.3-1); una vez seleccionado se debe ejecutar el cálculo activando el botón *Calcular* situado en la parte inferior izquierda de la ventana (recuadro verde de la Figura 4.2.1.3-1)

sultados del m	ódulo	ódulo	5	ituación		Combinación		Ru (kips)	R R (kips)	-	Observaciór
	1		E.L. de Re	esistencia	Resistencia	I		0.0		0.0 P	endiente
			E.L. de Re	esistencia	Resistencia	٧		0.0		0.0 P	endiente
Consulta de la s	situación y combinación									_	
					RR	Ru					
Situ	ación E.L. de Resistencia	-	F normal	E roz.	E horiz, estab.						
Comb	inación Resistencia I	-	(kine)	(kine)	(kine)	(kine)					
			(Kips)	(Kipa)	(Kips)	(Kips)					
	Peso propio muro		0.000	0.000	0.000	0.000	Desister	ain ann an dh			
	Peso tierras trasdos		0.000	0.000	0.000	0.000	Resisten	cia mayorada			
	Peso tierras puntera	handén	0.000	0.000	0.000	0.000	Euoran	do rozomionto		0	
	Empuje acuvo de las tierras en	u douos	0.000	0.000	0.000	0.000	ruerza i	ue rozamiento		-	kips
nermanentes	Empuje pasivo de las derras el	Empurio	0.000	0.000	0.000	0.000	Fuerza	horizontal esta	bilizadora :	0	kips
	Sobrecarga permanente en trasdós	Acción vertical	0.000	0.000	0.000	0.000	Adherer	ncia :		0	kips
	Carga permanente en coronació	in de muro	0.000	0.000	0.000	0.000					
		Empuie	0.000	0.000	0.000	0.000			1-1-1 (D.).	0	kine
	Carga en faja	Acción vertical	0.000	0.000	0.000	0.000	Fuerza	estabilizadora	total (R R):		Npa
		Empuie	0.000	0.000	0.000	0.000					
	Sobrecarga de trafico en trasdos	Acción vertical	0.000	0.000	0.000	0.000	Accion d	esestabilizado	ra mayorada	1	
Acciones	Carga de tráfico en coronaciór	n de muro	0.000	0.000	0.000	0.000	-			0	kine
variables	Viento		0.000	0.000	0.000	0.000	Fuerza	desestabilizad	iora (Ru):	<u> </u>	мрэ
	Nivel freático		0.000	0.000	0.000	0.000					
Acciones	Sismo		0.000	0.000	0.000	0.000					
accidentales	Impacto		0.000	0.000	0.000	0.000					
	Total		0.000	0.000	0.000	0.000					
servaciones											
											*
											~

Figura 4.2.1.3-1: Ventana de consulta de los resultados de deslizamiento con la normativa americana (AASHTO).

Una vez ejecutado el cálculo se mostrarán en pantalla los resultados; en la parte superior derecha se muestra el resumen de resultados para cada combinación y situación, que para la normativa AASHTO son las siguientes:

- Situación: Estado límite de resistencia:
 - Combinación: Resistencia I.

- Combinación: Resistencia III o V.
- Situación: Estado límite de evento extremo
 - Combinación sísmica: Evento extremo I.
 - Combinación de impacto de vehículos: Evento extremo II.

En el caso de que no se haya definido la acción sísmica o la acción de impacto sobre el muro, no se mostrará las combinaciones correspondientes.

Tal como se ha mencionado, el resumen de resultados se muestra en la parte superior derecha de la ventana (ver recuadro en rojo de la Figura 4.2.1.3-2). Para cada situación se proporciona la Fuerza desestabilizadora (R_u), la Fuerza Resistente mayorada (R_R) y el resultado de la verificación; en caso de que se cumpla la verificación (R_R > R_u) aparecerá la palabra *Cumple* en color verde, y, en caso contrario, *No cumple* en color rojo.

La Fuerza resistente mayorada se obtiene como el producto del factor de resistencia (ϕ) por la fuerza resistente nominal (R_n). Para mayor detalle consultar el Manual Técnico del módulo muros.

suitauos del m	M	ódulo	9	ituación		Combinación		Ru(t) RR(t)	Obser	vación
	1		E.L. de R	esistencia	Resistencia	I		501.3 39	9.0 No cum	ple
			E.L. de R	esistencia	Resistencia	v		502.5 39	9.2 No cum	ple
			E.L. de E	vento Extrem	o Evento Extr	emo I. Sismica		609.9 58	5.3 No cum	ple
			E.L. de Ev	vento Extrem	o Evento Extr	emo II. Impac	to	489.8 57	4.6 Cumple	
Consulta de la s	situación y combinación									
					RR	Ru				
Situ	ación E.L. de Resistencia	-	F normal	F roz.	F horiz, estab.					
Comb	inación Resistencia I	•	(†)	(†)	(†)	(†)				
	.	-	200.0	110.0	(1)					
	Peso propio muro		366.9	118.6	0.0	0.0	Desister			
	Peso tierras trasdos		/50.1	242.5	0.0	0.0	Resister	icia mayoraua		
	Peso tierras puntera	hand da	23.3	7.5	0.0	264.7	Europa	do rozomionto i	205 210	
	Empuje activo de las tierras	trascos	26.6	11.0	102.9	204.7	Fuerza	ue rozamiento ;	293.219	t
Acciones	Empuje pasivo de las tierras el	Emourio	-30.0	-11.0	103.8	11.5	Fuerza	horizontal estabilizadora :	103.769	t
permanentes	Sobrecarga permanente en trasdós	Acción vertical	6.6	2.1	0.0	0.0	Adhere	ncia :	0	t
	Carga permanente en coronació	Accion vertical	13.0	4.2	0.0	1.9				
	Carga permanente en coronado	Empute	0.0	0.0	0.0	0.0	-		209,090	+
	Carga en faja	Acción vertical	0.0	0.0	0.0	0.0	Fuerza	estabilizadora total (R R):	390.909	Ľ.
		Empuie	0.8	0.3	0.0	30.1				
	Sobrecarga de tráfico en trasdós	Acción vertical	0.0	0.0	0.0	0.0	Acción d	lesestabilizadora mayorada		
Acciones	Carga de tráfico en coronación	n de muro	6.8	2.2	0.0	4.1	-		501 279	+
Variables	Viento		0.0	0.0	0.0	0.0	Fuerza	desestabilizadora (RU):	301.275	۰.
	Nivel freático		-229.5	-74.2	0.0	189.0				
Acciones	Sismo		0.0	0.0	0.0	0.0				
accidentales	Impacto		0.0	0.0	0.0	0.0				
	Total		913.4	295.2	103.8	501.3				
oservaciones	El módulo 1 no cumple a deslizamie El módulo 1 no cumple a deslizamie El módulo 1 no cumple a deslizamie	nto para: Combi nto para: Combi nto para: Combi	nación de Resi nación de Resi nación de Eve	istencia I istencia V nto Extremo	I. Sísmica					A T

Figura 4.2.1.3-2: Diálogo resumen de verificaciones para el módulo seleccionado.

En la parte central de la ventana el usuario puede consultar los resultados detallados para cada una de las situaciones y combinaciones; los valores mostrados corresponden a la hipótesis más desfavorable. Para consultar los resultados relativos a una combinación

concreta se debe seleccionar en el diálogo señalado en el recuadro rojo de la Figura 4.2.1.3-3 la situación y combinación que se desee analizar.

	M	ódulo	S	lituación		Combinación		Ru(t)	R _R (t)	Obse	rvación
	1		E.L. de R	esistencia	Resistencia	I		501.3	399	.0 No cum	ple
			E.L. de R	esistencia	Resistencia	v		502.5	399	.2 No cum	ple
			E.L. de Ev	vento Extrem	o Evento Extr	emo I. Sismica		609.9	585	.3 No cum	ple
			E.L. de Ev	vento Extrem	o Evento Extr	emo II. Impact	to	489.8	574	.6 Cumple	
Consulta de la s	situación y combinación										
					R	Ru					
Situ	ación E.L. de Resistencia	-	⊢ normal	F roz.	F horiz. estab.						
Comb	inación Resistencia I		(t)	(t)	(t)	(t)					
	Peso propio muro		366.9	118.6	0.0	0.0					
	Peso tierras trasdós		750.1	242.5	0.0	0.0	Resisten	cia mavorada			
	Peso tierras puntera		23.3	7.5	0.0	0.0		, , , , , , , , , , , , , , , , , , , ,			
	Empuje activo de las tierras	trasdós	11.8	3.8	0.0	264.7	Fuerza d	de rozamiento :		295.219	•
Acciones	Empuje pasivo de las tierras e	n puntera	-36.6	-11.8	103.8	0.0	Current l	تحاجب احتجاجا	in dava i	102 760	1
permanentes	Cabaaaaa aanaaaaa aa baadda	Empuje	0.3	0.1	0.0	11.5	Fuerza r	iorizoritai estabi	1280018 ;	102.109	t
	sobrecarga permanente en trasuos	Acción vertical	6.6	2.1	0.0	0.0	Adherer	ncia:		0	t
	Carga permanente en coronació	ón de muro	13.0	4.2	0.0	1.9					
	Carga en faia	Empuje	0.0	0.0	0.0	0.0	Fuerza	estabilizadora to	tal (R =):	398.989	t
	Carga ciritaja	Acción vertical	0.0	0.0	0.0	0.0					
	Sobrecarga de tráfico en trasdós	Empuje	0.8	0.3	0.0	30.1	- Acción de	esestabilizadora	mayorada		
Acciones		Acción vertical	0.0	0.0	0.0	0.0	riceion a		mayorada		
variables	Carga de tráfico en coronación	n de muro	6.8	2.2	0.0	4.1	Fuerza	desestabilizado	a (Ru):	501.279	t
	Viento		0.0	0.0	0.0	0.0			- (****/*		
	Nivel freático		-229.5	-74.2	0.0	189.0					
Acciones	Sismo		0.0	0.0	0.0	0.0					
accidentales	Impacto		0.0	205.2	0.0	0.0					
	lotai		915.4	295.2	105.8	501.5					
servaciones	El módulo 1 no cumple a deslizamie El módulo 1 no cumple a deslizamie El módulo 1 no cumple a deslizamie	nto para: Combi nto para: Combi nto para: Combi	nación de Resi nación de Resi nación de Evel	istencia I istencia V nto Extremo I	I. Sísmica						*

Figura 4.2.1.3-3: Selección de la situación y combinación que se desea consultar

Para cada acción se proporcionan los siguientes resultados:

- La fuerza normal a la base de la zapata (*F normal*).
- La fuerza de rozamiento que se opone al deslizamiento (F roz).
- La fuerza horizontal estabilizadora (*F horiz. estab.*), que corresponde a las fuerzas horizontales que se oponen al deslizamiento (empuje pasivo y fuerzas horizontales actuando en coronación de muro).
- La fuerza desestabilizadora (R_u).

Los valores presentados corresponden a los valores mayorados por el coeficiente de mayoración de acciones y calculados para la totalidad del módulo.

En el lado derecho de la ventana se muestra el total de la *Resistencia mayorada R*_R (fuerzas estabilizadoras) compuesta por la *Fuerza de rozamiento*, las *Fuerzas horizontales estabilizadoras* y la fuerza de adherencia en el contacto zapata-terreno (*Adherencia*), y la *Fuerza desestabilizadora* total mayorada (R_U).

Finalmente, en la parte inferior encontramos la casilla *Observaciones* en la que se muestran los mensajes correspondientes a los no cumplimientos de la verificación de deslizamiento

de todos los módulos del muro. Se puede ver así de forma rápida en qué módulos no se verifica la comprobación del deslizamiento.

4.2.2 Informe

La opción *Informe* del cálculo a deslizamiento permite obtener un documento con el resultado del cálculo realizado.

EL Deslizamiento zapata - t	terreno
Guardar listado como	
Nombre del archivo :	aashto-Listado deslizamiento-Modulo 1
	Documentos Microdost Word 97-2003(*.doc) *.doc
	Aceptar Cancelar

Figura 4.2.2-1: Ventana para la introducción del nombre y formato del documento.

Para ello se debe introducir el nombre del archivo con el que se quiere guardar el documento de la memoria y el formato del documento en la ventana que aparecerá al seleccionar la opción de Informe (Figura 4.2.2-1).

Por defecto el documento se guardará en el mismo directorio en el que está el archivo del muro (directorio de trabajo). No obstante, con el botón *Examinar* se podrá seleccionar una ruta alternativa en la que se desea guardar el documento.

En el informe se mostrará la misma información que la que se muestra con la opción *Consulta* (ver apartado 4.2.1).

4.3 Orden Vuelco

Con la orden *Vuelco* se pueden consultar los resultados del cálculo a vuelco rígido para cada una de las situaciones. Los resultados se pueden consultar directamente por pantalla (opción *Consulta*) o bien sacando un informe de los resultados (opción *Informe*).

Para cada situación y combinación se proporcionan los momentos estabilizadores y los momentos desestabilizadores correspondientes a la hipótesis más desfavorable para cada una de las acciones así como los valores totales a partir de los cuales se realiza la verificación del vuelco. El formato concreto de salida de los resultados depende de la normativa con la que se está trabajando.

4.3.1 Consulta

En este apartado se explica para cada una de las normativas los resultados que proporciona *CivilCAD3000* para el cálculo a vuelco.

4.3.1.1 Normativa española

Al seleccionar la opción *Consulta* aparece en pantalla la ventana de la Figura 4.3.1.1-1. En la parte superior izquierda de la ventana el usuario debe seleccionar el módulo del cual se quieren consultar los resultados (recuadro en rojo de la Figura 4.3.1.1-1); una vez seleccionado se debe ejecutar el cálculo activando el botón *Calcular* situado en la parte inferior izquierda de la ventana (recuadro verde de la Figura 4.3.1.1-1).

	ulo	Situación		Combinación	F.S.	F.S. admisible	e Observació
1	Pe	rsistente	Cuasi	permanente	0.0	0.0	D Pendiente
	Pe	rsistente	Caract	erística	0.0	0.0	Pendiente
	Ac	cidental	Sísmica	3	0.0	0.0	0 Pendiente
	Ac	cidental	Impac	to	0.0	0.0	Pendiente
Consulta de la	situación y combinación						
City	- sián Descistente						
Situ	inación Persistente		M estab. (mt)	M desest. (mt)			
Comb	inación Cuasi permanente	• 4					
	Peso propio muro		0.000	0.000			
	Peso tierras trasdo	S	0.000	0.000			
	Peso tierras punter	a	0.000	0.000			
	Empuje activo de las tierra	s trasdos	0.000	0.000			
Acciones	Empuje pasivo de las tierras	en puntera	0.000	0.000			
permanentes	Sobrecarga permanente en trasdó	is Empuje	0.000	0.000			
	C	Accion vertical	0.000	0.000			
	Carga permanente en corona	cion de muro	0.000	0.000			
	Carga en faja	Empuje Acción vortical	0.000	0.000			
		Empurie	0.000	0.000			
	Sobrecarga de tráfico en trasdós	Acción vertical	0.000	0.000	Momento estabilizador	. 0	mt
Acciones	Carga de tráfico en coronaci	ón de muro	0.000	0.000	Homerico escabilizador		inc
variables	Viento	on ac maro	0,000	0,000	Momento desestabiliza	dor: 0	mt
	Nivel freático		0.000	0.000			
Acciones	Sismo		0.000	0.000	Factor de seguridad :	0	
accidentales	Impacto		0.000	0.000	En abou do nomunido do d		
			0.000	0.000	Factor de seguridad ad	misible : 0	

Figura 4.3.1.1-1: Ventana de consulta de los resultados de vuelco con la normativa española.

Una vez ejecutado el cálculo se mostraran en pantalla los resultados; en la parte superior derecha se muestra el resumen de resultados para cada combinación y situación, que para la normativa española son las siguientes:

- Situación persistente:
 - Combinación cuasi permanente.
 - Combinación Característica.

- Situación accidental:
 - Combinación sísmica.
 - Combinación de impacto de vehículos.

En el caso de que no exista acción sísmica o la acción de impacto, no se mostrará las combinaciones correspondientes.

Como se ha mencionado, el resultando se muestra en la parte superior derecha de la ventana (ver recuadro en rojo de la Figura 4.3.1.1-2). Para cada situación se proporciona el Factor de seguridad calculado (F.S.), el Factor de seguridad admisible (F.S. admisible) y el resultado de la verificación; en caso de que se cumpla la verificación (FS>FS admisible) aparecerá la palabra *Cumple* en color verde, y, en caso contrario, *No cumple* en color rojo.

Recuérdese que el Factor de Seguridad se define como el cociente entre el momento estabilizador (el que se oponen al vuelco) y el momento volcador (el que provoca el vuelco).

$$FS = \frac{M_{estabilizador}}{M_{desestabilizador}} \qquad (Ex. 4.3.1.1 - 1)$$

Mód	ulo	Situación		Combina	ación	F.S. F.S	. admisible	Observaci
1	- Per	sistente	Cuas	i permanente		7.072	2.000	Cumple
	Per	sistente	Cara	cterística		7.072	1.800	Cumple
	Acc	idental	Sísmi	ca		2.689	1.500	Cumple
	Acc	idental	Impa	cto		7.072	1.500	Cumple
Consulta de la s	situación y combinación							
City	- ife Desciptor to							
Cambi	ación Persistente		M estab. (mt)	M desest. (r	mt)			
Combi	Page gradie gradie		E0.2	-	0.0			
	Peso propio muro		2025	0	0.0			
	Peso tierras puntera	,	2023	5	0.0			
	Empuje activo de las tierras	traedós	0.	0 35	8.2			
Acciones	Empuje pasivo de las tierras e	n puntera	0.	0	0.0			
permanentes		Empuie	0.	0	0.0			
	Sobrecarga permanente en trasdós	Acción vertical	0.	0	0.0			
	Carga permanente en coronaci	ión de muro	0.	0	0.0			
	Carea on fain	Empuje	0.	0	0.0			
	Carga en Taja	Acción vertical	0.	0	0.0			
	Sobrecarda de tráfico en trasdós	Empuje	0.	0	0.0			_
Acciones	Sobreedige de l'anco en l'abuos	Acción vertical	0.	0	0.0 Momen	to estabilizador :	2532.99	mt
variables	Carga de tráfico en coronació	in de muro	0.	0	0.0 Momen	to desestabilizador	358.156	mt
	Viento		0.	0	0.0			
	Nivel freático		0.	0	0.0 Easter	و المحادثين بمحمد حاد	7.07	220
Acciones	Sismo		0.	0	0.0 Factor o	ue segundad :	7.07	229
accidentaies	Impacto		2522	0 35	Factor of Factor	de seguridad admis	ble: 2	
	Iotai		2555.	0 33	0.2			
oservaciones								
	Verifica la comprobación.							-
	Verifica la comprobación.							-

Figura 4.3.1.1-2: Diálogo resumen de verificaciones para el módulo seleccionado.

En la parte central de la ventana el usuario puede consultar los resultados detallados para cada una de las situaciones y combinaciones; los valores mostrados corresponden a la hipótesis más desfavorable. Para consultar los resultados relativos a una combinación concreta se debe seleccionar en el diálogo señalado en el recuadro rojo de la Figura 4.3.1.1-3 la situación y combinación que se desee analizar.

si permanente acterística nica acto) M desest. (mt) .1 0.0 .2 0.0	2.683 2.646 2.141 2.547	2.000 1.800 1.500 1.500	Cumple Cumple Cumple Cumple
acterística nica acto) M desest. (mt) .1 0.0 .2 0.0	2.646 2.141 2.547	1.800 1.500 1.500	Cumple Cumple Cumple
hica acto) M desest. (mt) .1 0.0 .2 0.0	2.141 2.547	1.500 1.500	Cumple Cumple
) M desest. (mt) 1 0.0 .2 0.0	2.547	1.500	Cumple
) M desest. (mt) .1 0.0 .2 0.0			
) M desest. (mt) 1 0.0 2 0.0			
M desest. (mt)			
.1 0.0			
.2 0.0			
.1 0.0			
.0 519.9			
.8 0.0			
.0 34.1			
.2 0.0			
.0 0.0			
.0 31.1			
.6 0.0			
.0 100.3			
.0 0.0	Momento estabilizador :	4856.01	. mt
.0 22.8	Momento desestabilizador:	1810.11	mt
.0 0.0			
.0 1101.8	Fortes de constituit		
.0 0.0	Factor de seguridad :	2.68	212
0.0	Factor de seguridad admisit	ole: 2	
.0 1810.1			
	.0 34.1 .2 0.0 .0 31.1 .6 0.0 .0 100.3 .0 0.0 .0 22.8 .0 0.0 .0 1101.8 .0 0.0 .0 0.0 .0 1810.1	.0 34.1 .2 0.0 .0 0.0 .0 31.1 .6 0.0 .0 100.3 .0 0.0 .0 22.8 .0 0.0 .0 100.8 .0 0.0 .0 1101.8 .0 0.0 .0 1810.1 Factor de seguridad admisit	.0 34.1 .2 0.0 .0 0.0 .0 31.1 .6 0.0 .0 100.3 .0 0.0 .0 0.0 .0 22.8 .0 0.0 .0 0.0 .0 101.8 .0 0.0 .0 1810.1 Factor de seguridad : 2.683 .0 0.0 .0 1810.1

Figura 4.3.1.1-3: Selección de la situación y combinación que se desea consultar.

Para cada acción se proporcionan los siguientes resultados:

- El momento estabilizador (*M estab.*)
- El momento desestabilizador (*M desest.*)

Los valores presentados corresponden a los valores mayorados por el coeficiente de mayoración de acciones y afectados por el coeficiente de combinación y calculados para la totalidad del módulo.

En el lado derecho de la ventana se muestra el *Momento total estabilizador* y el *Momento total desestabilizador*. Finalmente se muestra el *Factor de seguridad* obtenido y el *Factor de seguridad admisible*.

Finalmente en la parte inferior encontramos la casilla *Observaciones* en la que se muestran los mensajes correspondientes a los no cumplimientos de la verificación de vuelco de todos los módulos del muro. Se puede ver así de forma rápida en que módulos no se verifica la comprobación a vuelco.

4.3.1.2 Normativa europea

Al seleccionar la opción *Consulta* aparece en pantalla la ventana de la Figura 4.3.1.2-1. En la parte superior izquierda de la ventana el usuario debe seleccionar el módulo del cual se quieren consultar los resultados (recuadro en rojo de la Figura 4.3.1.2-1); una vez seleccionado se debe ejecutar el cálculo activando el botón *Calcular* situado en la parte inferior izquierda de la ventana (recuadro verde de la Figura 4.3.1.2-1)

Mód	ulo	Situación		Combinación	F.S. F.	S. admisible	Observació
1	Per	sistente			0.0	0.0	Pendiente
	Acc	idental	Sísmica	1	0.0	0.0	Pendiente
	Acc	dental	Impact	0	0.0	0.0	Pendiente
Consulta de la :	situación y combinación						
Situ: Combi	ación Persistente inación	-	M estab. (mt)	M desest. (mt)			
	Peso propio muro		0.000	0.000			
	Peso tierras trasdós	1	0.000	0.000			
	Peso tierras puntera	1	0.000	0.000			
	Empuje activo de las tierras	trasdós	0.000	0.000			
Acciones	Empuje pasivo de las tierras e	n puntera	0.000	0.000			
permanentes	Cobracarea permanente en tradés	Empuje	0.000	0.000			
	Sobrecarga permanente en trasdos	0.000	0.000				
	Carga permanente en coronaci	ón de muro	0.000	0.000			
	Carga en faja	Empuje	0.000	0.000			
	Carga cirraja	Acción vertical	0.000	0.000			
	Sobrecarga de tráfico en trasdós	Empuje	0.000	0.000			_
Acciones		Acción vertical	0.000	0.000	Momento estabilizador :	0	mt
variables	Carga de tráfico en coronación de muro		0.000	0.000	Momento desestabilizado	r: 0	mt
	Viento		0.000	0.000			
	Nivel freático		0.000	0.000			_
Acciones	Sismo		0.000	0.000	Factor de seguridad :	0	
accidentales	Impacto		0.000	0.000	Factor de seguridad admi	sible: 0	
	Total		0.000	0.000			
servaciones							

Figura 4.3.1.2-1: Ventana de consulta de los resultados de vuelco con la normativa europea.

Una vez ejecutado el cálculo se mostraran en pantalla los resultados; en la parte superior derecha se muestra el resumen de resultados para cada combinación y situación, que para la normativa europea son las siguientes:

- Situación persistente.

- Situación accidental:
 - Combinación sísmica.
 - Combinación de impacto de vehículos.

En caso de que no se haya definido en el muro la acción sísmica o la acción de impacto no se mostrará las combinaciones correspondientes.

Como se ha mencionado, el resultando se muestra en la parte superior derecha de la ventana (ver recuadro en rojo de la Figura 4.3.1.2-2). Para cada situación se proporciona el Factor de seguridad calculado (F.S.), el Factor de seguridad admisible (F.S. admisible) y el resultado de la verificación; en caso de que se cumpla la verificación (FS>FS admisible) aparecerá la palabra *Cumple* en color verde, y en caso contrario *No cumple* en color rojo.

Recuérdese que el Factor de Seguridad se define como el cociente entre los momentos estabilizadores (los que se oponen al vuelco) y los momentos desestabilizadores (los que provocan el vuelco).

$$FS = \frac{M_{estabilizador}}{M_{desestabilizador}}$$
(Ex. 4.3.1.2 - 1)

Los Eurocódigos no definen explícitamente ningún factor de seguridad global FS, ya que introducen la seguridad mayorando las acciones y aplicando los factores de resistencia R (γ_R), por lo que la condición que debe verificarse es que el Momento estabilizador sea superior al momento de vuelco, lo que equivale a considerar un Factor admisible igual a la unidad (FSadmisible = 1,0), que es el valor que se muestra en el diálogo. Para mayor detalle consultar el Manual Técnico del módulo Muros.

Mód	lulo	Situación		Combinación	F.S.	F.S. admisible	Observac
1	- Pers	istente			1.626	1.000	Cumple
	Acci	dental	Sísmica	3	2.071	1.000	Cumple
	Acci	dental	Impact	to	2.470	1.000	Cumple
Conculta de la	situación y combinación						
Consulta de la	situation y combination						
Situ Comb	inación Persistente	•	M estab. (mt)	M desest. (mt)			
	Peso propio muro			0.0			
	Peso tierras trasdós		3190.3	0.0			
	Peso tierras puntera		11.4	0.0			
	Empuje activo de las tierras	trasdós	0.0	769.4			
Acciones	Empuje pasivo de las tierras e	n puntera	17.4	0.0			
permanentes	Sobrecarga permanente en trasdós	Empuje	0.0	47.7			
		Acción vertical	42.9	0.0			
	Carga permanente en coronaci	ón de muro	4.8	0.0			
	Carga en faja	Empuje	0.0	0.0			
		Acción vertical	0.0	0.0			
	Sobrecarga de tráfico en trasdós	Empuje	0.0	109.0	Manager antabilities day	. 4401.2	2
Acciones		Accion Vertical	0.0	20.0	Momento estabilizador	: ++01.2	2 ml
variables	Carga de tranco en coronación	n de muro	0.0	37.5	Momento desestabiliza	dor: 2707.0	/ mt
	Nivel frestico		0.0	1652.8			
Acciones	Sismo		0.0	0.0	Factor de seguridad :	1.62	582
accidentales	Impacto		0.0	0.0	Franke de servici de la		-
	Total		4401.2	2707.1	Factor de seguridad ad	misible : 1	
servaciones							
user vaciones							

Figura 4.3.1.2-2: Diálogo resumen de verificaciones para el módulo seleccionado.

En la parte central de la ventana el usuario puede consultar los resultados detallados para cada una de las situaciones y combinaciones; los valores mostrados corresponden a la hipótesis más desfavorable. Para ello se debe seleccionar en el diálogo señalado en el recuadro rojo de la Figura 4.3.1.2-3 la situación y combinación que se desee.

Mód	Módulo Si			Combinación	F.S.	F.S. admisible	Observac
1	Per Per	sistente			1.626	1.000	Cumple
	Acc	idental	Sísmica	1	2.071	1.000	Cumple
	Acc	idental	Impact	0	2.470	1.000	Cumple
Consulta de la	situación y combinación						
Consolida de la	acián Persistente						
Comb	inación	–	M estab. (mt)	M desest. (mt)			
_	Peso propio muro		1134.3	0.0			
	Peso tierras trasdós	;	3190.3	0.0			
	Peso tierras puntera	3	11.4	0.0			
	Empuje activo de las tierras	trasdós	0.0	769.4			
Acciones	Empuje pasivo de las tierras e	n puntera	17.4	0.0			
permanentes	Colorenza anno 1997 de la bradé	Empuje	0.0	47.7			
	Sobrecarga permanente en trasdos	Acción vertical	42.9	0.0			
	Carga permanente en coronaci	ón de muro	4.8	0.0			
	Carga en faja	Empuje	0.0	0.0			
		Acción vertical	0.0	0.0			
	Cobrocarca do tráfico on tradéo	Empuje	0.0	169.0			
	Sobrecarga de tranco en trasdos	Acción vertical	0.0	0.0	Momento estabilizador	: 4401.2	2 mt
variables	Carga de tráfico en coronació	n de muro	0.0	30.8	Momento desestabiliza	dor: 2707.0	7 mt
Variabica	Viento		0.0	37.5			
	Nivel freático		0.0	1652.8			
Acciones	Sismo		0.0	0.0	Factor de seguridad :	1.62	582
accidentales	Impacto		0.0	0.0	Factor de seguridad ad	misible : 1	
	Total		4401.2	2707.1			
oservaciones							

Figura 4.3.1.2-3: Selección de la situación y combinación que se desea consultar.

Para cada acción se proporcionan los siguientes resultados:

- El momento estabilizador (*M estab.*)
- El momento desestabilizador (*M desest.*)

Los valores presentados corresponden a los valores mayorados por el coeficiente de mayoración de acciones, afectados por el coeficiente de combinación y por el coeficiente R de minoración de la resistencia y calculados para la totalidad del módulo.

En el lado derecho de la ventana se muestra el *Momento estabilizador* total y el *Momento desestabilizador* total. Finalmente se muestra el *Factor de seguridad* adicional obtenido y el *Factor de seguridad admisible*.

Finalmente en la parte inferior encontramos la casilla *Observaciones*, en la que se muestran los mensajes correspondientes a los incumplimientos de la verificación de vuelco de todos los módulos del muro. Se puede ver así de forma rápida en qué módulos no se verifica la comprobación a vuelco.

4.3.1.3 Normativa americana

Al seleccionar la opción *Consulta* aparece en pantalla la ventana de la Figura 4.3.1.3-1. En la parte superior izquierda de la ventana el usuario debe seleccionar el módulo del cual se quieren consultar los resultados (recuadro en rojo de la Figura 4.3.1.3-1); una vez seleccionado se debe ejecutar el cálculo activando el botón *Calcular* situado en la parte inferior izquierda de la ventana (recuadro verde de la Figura 4.3.1.3-1)

nprobación al v	uelco												
Resultados del mó Mód	ulo			Situa	ción			Combinaciór	ı	Excentricidad (m)	Exc. adm (m)	Obs	ervación
E.L. de Resistencia			Res	ister	ncia I		0.0	0.	0 Pen	diente			
E.L. de Resistencia			Res	sister	ncia V		0.0	0.	0 Pen	diente			
		E.	.L. de E	vento	Extr	emo Eve	ento	Extremo I. Sism	ica	0.0	0.	0 Pen	diente
	E.L. de Evento Extre			emo Eve	ento	Extremo II. Imp	acto	0.0	0.	0 Pen	diente		
- Consulta de la	situación	n y combinación											
Situ	ación	E.L. de Resistencia		-				Resultante					
Comb	inación	Resistencia I		-		Horizontal (f	t)	Vertical (t)	Momento (mi	Ð			
	Peso propio m		0			0.0	00	0,000	0.00	0			
		Peso tierras trasd	lós			0.0	00	0.000	0.00	0			
		Peso tierras punte	era			0.0	00	0.000	0.00	0			
		Empuie activo de las tierra	as trasd	lós		0.0	00	0.000	0.00	0			
Acciones	Er	npuie pasivo de las tierras	s en pur	ntera		0.0	00	0.000	0.00	0			
permanentes			L E	Empuje		0.0	00	0.000	0.00	0			
	Sobreca	Sobrecarga permanente en trasdos Acción			tical	0.0	00	0.000	0.00	0			
	Car	Carga permanente en coronación de muro			0.0	00	0.000	0.00	0				
	Carran an fain		E	Empuje		0.0	00	0.000	0.00	0			
		Carga en faja		ón ver	tical	0.0	00	0.000	0.00	0			
	Cabra	enven de tréfice en tradé	E	Empuje		0.0	00	0.000	0.00	0			
	Sobred	larga de tranco en trasuo	Acci	ón ver	tical	0.0	00	0.000	0.00	0			
Acciones	Ca	arga de tráfico en coronac	ción de r	muro		0.0	00	0.000	0.00	0			
variables		Viento				0.0	00	0.000	0.00	0			
		Nivel freático				0.0	00	0.000	0.00	0 Excentricid	lad.	0	-
Acciones		Sismo				0.0	00	0.000	0.00		au:	-	
accidentales		Impacto				0.0	00	0.000	0.00	0 Excentricid	lad adm.:	0	m
		Total				0.0	00	0.000	0.00	0			
Observaciones													
													*
Calcular								Api	icar	Ayuda	Aceptar		Cancelar

Figura 4.3.1.3-1: Ventana de consulta de los resultados de vuelco con la normativa americana (AASHTO).

Una vez ejecutado el cálculo se mostraran en pantalla los resultados; en la parte superior derecha se muestra el resumen de resultados para cada combinación y situación, que para la normativa AASHTO son las siguientes:

- Situación: Estado límite de resistencia:
 - Combinación: Resistencia I
 - Combinación: Resistencia III o V
- Situación: Estado límite de evento extremo
 - Combinación sísmica: Evento extremo I
 - Combinación de impacto de vehículos: Evento extremo II

En el caso de que no exista acción sísmica o la acción de impacto, no se mostrará las combinaciones correspondientes.

Como se ha mencionado, el resumen de resultados se muestra en la parte superior derecha de la ventana (ver recuadro en rojo de la Figura 4.3.1.3-2). Para cada situación y combinación se proporciona la Excentricidad de la resultante en la base de la zapata respecto al centro de la misma, la Excentricidad máxima admisible y el resultado de la verificación; en caso de que se cumpla la verificación (Excentricidad < Excentricidad admisible) aparecerá la palabra *Cumple* en color verde, y en caso contrario *No cumple* en color rojo.

Módulo 1 v				Situación		Co	ombinació	n	Excentricidad (m)	Exc. adm. (m)	Observa	aciór	
				E.L.	de Resistencia	Resi	stencia I			0.0	0.	Pendien	te
			E.L.	de Resistencia	Resi	stencia V			0.0	0.	Pendien	te	
				E.L.	de Evento Ext	emo Ever	to Extrer	mo I. Sism	ica	0.0	0.	Pendien	te
				E.L.	de Evento Ext	emo Ever	to Extrer	no II. Imp	acto	0.0	0.	Pendien	te
Consulta d	le la si	tuación	y combinación										
	Situa	ción	E.L. de Resistencia		-		Resu	Itante					
C	Combin	ación	Resistencia I		•	Horizontal (t)	Vert	tical (t)	Momento (mt)			
			Peso propio r	nuro		0.00	0	0.000	0.00	0			
			Peso tierras tr	asdós		0.00	0	0.000	0.00	0			
			Peso tierras pu	untera		0.00	0	0.000	0.00	0			
			Empuje activo de las ti	ierras	trasdós	0.00	0	0.000	0.00	0			
Accione	es	En	npuje pasivo de las tie	rras er	n puntera	0.00	0	0.000	0.00	0			
permaner	ntes	obrocs	raa pormanonto on tr	andán	Empuje	0.00	0	0.000	0.00	0			
		obreca	irga permanente en u	asuus	Acción vertica	0.00	0	0.000	0.00	0			
		Carga permanente en coronación de muro			0.00	0	0.000	0.00	0				
		Carga en faia		Empuje	0.00	0	0.000	0.00	0				
			Curga cirraja		Acción vertica	0.00	0	0.000	0.00	0			
		Sobrer	aroa de tráfico en tra	sdós	Empuje	0.00	0	0.000	0.00	0			
Accione	-	JODIC	arga ac a anco ch'a a	3003	Acción vertica	0.00	0	0.000	0.00	0			
variable	28 -	Ca	arga de tráfico en coro	naciór	n de muro	0.00	0	0.000	0.00	0			
			Viento			0.00	0	0.000	0.00	0			
			Nivel freáti	со		0.00	0	0.000	0.00	0 Excentricid	ad: 0)	m
Accione	es		Sismo			0.00	0	0.000	0.00	0			
accidenta	ales		Impacto			0.00	0	0.000	0.00	U Excentricid	ad adm.:	'	m
		_	Total			0.00	0	0.000	0.00	0			
bservacione	s												
	Г												

Figura 4.3.1.3-2: Diálogo resumen de verificaciones para el módulo seleccionado

En la parte central de la ventana el usuario puede consultar los resultados detallados para cada una de las situaciones y combinaciones correspondientes a la hipótesis más desfavorable. Para consultar los resultados relativos a una combinación concreta se debe seleccionar en el diálogo señalado en el recuadro rojo de la Figura 4.3.1.3-3 la situación y combinación que se desee analizar.

Mód 1	ulo	Situación		Combinació	n E	xcentricidad (m)	Exc. adm. (m)	Observa	ició
-	E.L	de Resistencia	Resiste	encia I		1.240	1.750) Cumple	
	E.L	de Resistencia	Resiste	encia V		1.252	1.750	Cumple	_
	E.L	de Evento Extr	remo Evento	Extremo I. Sism	ica	1.814	2.800) Cumple	
	E.L	de Evento Extr	remo Evento	Extremo II. Imp	acto	1.214	2.800) Cumple	
Consulta de la	situación y combinación								
Situ	ación E.L. de Resistencia	Ţ		Resultante					
Combi	inación Resistencia I		Horizontal (t)	Vertical (t)	Momento (mt)				
_	Peso propio muro		0.0	366.9	271.2				
	Peso tierras trasdós	;	0.0	750.1	-800.0				
	Peso tierras puntera	3	0.0	23.3	69.5	;			
	Empuje activo de las tierras	trasdós	264.7	11.8	777.4	ł			
Acciones	Empuje pasivo de las tierras e	en puntera	-55.1	-9.7	-59.8				
permanentes	Cabaaaaa aannaaaba aa baadd	Empuje	11.5	0.3	56.9				
	Sobrecarga permanente en trasuos	Acción vertical	0.0	6.6	-6.4	ł			
	Carga permanente en coronac	ión de muro	1.9	13.0	42.2	2			
	Carga en faia	Empuje	0.0	0.0	0.0				
	Carga en laja	Acción vertical	0.0	0.0	0.0				
	Sobrecarga de tráfico en trasdós	Empuje	30.1	0.8	138.3	6			
Acciones	sobreed ga de d'anco en d'abaos	Acción vertical	0.0	0.0	0.0				
variables	Carga de tráfico en coronació	in de muro	4.1	6.8	54.4	L			
	Viento		0.0	0.0	0.0				
	Nivel freático		189.0	-229.5	622.0	Excentricid	ad: 1	.23977	m
Acciones	Sismo		0.0	0.0	0.0	E		75	
accidentales	Impacto		0.0	0.0	0.0	Excentricia	ad adm.: 🕒		m
	Total		446.2	940.2	1165.7				
servaciones									

Figura 4.3.1.3-3: Selección de la situación y combinación que se desea consultar.

Para cada acción se proporcionan los siguientes resultados:

- La fuerza horizontal en la base de la zapata (Horizontal).
- La fuerza vertical en la base de la zapata (Vertical).
- El momento respecto al centro de la zapata (*Momento*).

En la última fila se muestra el valor total de la contribución de todas las acciones.

Los valores presentados corresponden a los valores mayorados por el coeficiente de mayoración de acciones y calculados para la totalidad del módulo.

Como resumen de la verificación en el lado derecho de la ventana se muestra la *Excentricidad* resultante, obtenida como cociente entre el momento y la fuerza vertical, y la *Excentricidad admisible*.

Finalmente en la parte inferior encontramos la casilla *Observaciones* en la que se muestran los mensajes correspondientes a los incumplimientos de la verificación de vuelco de todos los módulos del muro. Se puede ver así de forma rápida en qué módulos no se verifica la comprobación del vuelco.

4.3.2 Informe

La opción *Informe* del cálculo a vuelco permite obtener un documento con el resultado del cálculo realizado.

EL Vuelco rígido	
Guardar listado como	
Nombre del archivo :	ea3-Listado vuelco-Modulo 1
	Documentos Microdost Word 97-2003(*.doc) *.doc
	Examinar
	Aceptar Cancelar

Figura 4.3.2-1: Ventana para la introducción del nombre y formato del documento.

Se debe introducir el nombre del archivo con el que se quiere guardar el documento de la memoria y elegir el formato del mismo en la ventana que aparecerá al seleccionar la opción de Informe (Figura 4.3.2-1).

Por defecto el documento se guardará en el mismo directorio en el que está el archivo del muro (directorio de trabajo). No obstante, con el botón *Examinar* se podrá seleccionar una ruta alternativa en la que se desea guardar el documento.

En el listado se mostrará la misma información que la que se muestra con la opción *Consulta* (ver apartado 4.3.1).

4.4 Orden Estabilidad global

La orden *Estabilidad global* permite configurar, calcular y consultar el cálculo de la estabilidad global. Es importante señalar que el cálculo se realiza con el método aproximado de *Fellenius*, considerando únicamente superficies de rotura circulares y con distribuciones de presiones intersticiales hidrostáticas (con variación lineal entre la zarpa delantera y la trasera).

El proyectista deberá valorar la verificación de la estabilidad global con métodos más precisos en función de la geometría, la estratificación y el flujo de agua.

Al seleccionar la opción *Estabilidad global* se desplegaran en el menú principal las tres opciones siguientes.

- Configuración.
- Consulta.
- Informe.

🔣 ea3	
Muro Proyecto Entrada Análisis Deslizamiento Velco Estabilidad global Configuración Consulta Listado Hundimiento del terreno	Planta general
Rotura por flexión Fisuración Fisuración Rotura por cortante Deformaciones Generación de armado Mediciones Salida	1
Verificación Muro. Módulo 1. EL Deslizamiento zapat Muro. Módulo 1. EL Vuelco rígido Muro. Módulo 1. ELU Hundimiento del t Muro. Módulo 1. ELU Hundimiento del t	Resultado Cumple Cumple Cumple
Normas españolas EHE08 / IAP11 Unidades: M.K.S. Calcular todo Fi	X: 0.000 Y: 0.000 at ijar / no fijar croquis

Figura 4.4-1: Opciones del menú principal para la Estabilidad global.

El cálculo a estabilidad global, se realiza con el método aproximado de *Fellenius*, considerando únicamente superficies de rotura circulares y con distribuciones de presiones intersticiales hidrostáticas (con variación lineal entre la zarpa delantera y la trasera).

El proyectista deberá valorar la verificación de la estabilidad global con métodos más precisos en función de la geometría, la estratificación y el flujo de agua.

4.4.1 Orden Configuración

El análisis de la estabilidad global se realiza a partir del análisis de posibles centros de los círculos de rotura definidos a partir de su centro y con distintos radios para cada uno de ellos. Para ello se establece una cuadrícula de los centros de los círculos a analizar, obteniéndose para cada uno de ellos el Factor de seguridad mínimo de entre todas las hipótesis y todos los radios posibles generados con dicho centro.

CivilCAD3000 permite que la determinación de la cuadrícula de centros y de los radios de los círculos se haga de forma automática o bien que la generación de la cuadrícula sea configurada por el usuario. En el primer caso el usuario debe seleccionar la opción *Cálculo automático*, mientras que en el segundo caso debe seleccionar la opción *Configurar cálculo* (ver Figura 4.4.1-1)

Figura 4.4.1-1: Ventana de configuración del cálculo a estabilidad global.

En la opción del cálculo automático, *CivilCAD3000* parte de una cuadrícula inicial, a partir de la cual y mediante un proceso iterativo modifica dicha cuadrícula hasta que el punto de Factor de seguridad mínimo se sitúa en el interior de la cuadrícula. El radio máximo considerado es de una vez y media (1,5) el radio mínimo (radio menor que no intersecta al muro). El número de círculos considerado para cada centro es de siete (7).

Si se selecciona la opción de *Configurar cálculo* se activará la parte inferior del diálogo (ver Figura 4.4.1-2), donde el usuario debe introducir la siguiente información:

- Coordenadas de la esquina inferior derecha y de la esquina superior izquierda de la cuadrícula de centros que se considerará en el cálculo a estabilidad. Las coordenadas se definen respecto a los ejes locales (S, Z) cuyo origen se sitúa en la intersección del plano de referencia (ver apartado 3.1.2) con la cara superior de la zapata.
- Número de filas de la malla de centros de círculos de rotura (este valor debe ser superior o igual a tres (3).
- Número de columnas de la malla de centros de círculos de rotura (este valor debe ser superior o iguala tres (3).
- Cociente entre el radio máximo que se desea considerar y el radio mínimo. El radio mínimo se obtiene buscando el radio menor que no intersecta al muro.
- Número de círculos de rotura considerados para cada centro.

Figura 4.4.1-2: Ventana de configuración personalizada de la estabilidad global.

4.4.2 Orden Consulta

Al seleccionar la opción Consulta aparecerá en pantalla la ventana de la Figura 4.4.2-1.

comprobación a estabilidad gl	obal				×
Resultados del módulo Módulo 1				Sección	a mostrar
Situación	Combinación	F.S.	F.S. admisible	Observación	Figura
Persistente	Cuasi permanente	0.0	0.0	Pendiente	Mostrar
Persistente	Característica	0.0	0.0	Pendiente	Mostrar
Accidental	Sísmica	0.0	0.0	Pendiente	Mostrar
Accidental	Impacto	0.0	0.0	Pendiente	Mostrar
Observaciones			Mostrar t	odos los círcul	os de rotura
					*
Calcular		Aplicar	Ayuda	Aceptar	Cancelar

Figura 4.4.2-1: Ventana de consulta de los resultados de la estabilidad global.

Con esta opción se pueden consultar los resultados del cálculo a estabilidad para cada situación y combinación. En la parte superior izquierda de la ventana el usuario debe seleccionar el módulo del cual se quieren consultar los resultados (recuadro en rojo de la Figura 4.4.2-1), así como la sección transversal que se desea mostrar, la cual solo se elige a efectos de dibujo, ya que el cálculo se realiza a nivel de módulo.

Una vez configurado, se debe ejecutar el cálculo activando el botón *Calcular* situado en la parte inferior izquierda de la ventana (recuadro verde de la Figura 4.4.2-1).

Al ejecutarse el cálculo se mostrarán en el diálogo señalado en la Figura 4.4.2-2 los resultados correspondientes a todas las situaciones y combinaciones; los resultados mostrados corresponden en cada caso a la hipótesis más desfavorable.

C	omprobación a estabilidad gl	obal				×			
	Resultados del módulo Módulo				Sección	a mostrar			
	1 💌				1	-			
	Situación	Combinación	F.S.	F.S. admisible	Observación	Figura			
	Persistente	Cuasi permanente	1.785	2.000	No cumple	Mostrar			
	Persistente	Característica	1.785	1.300	Cumple	Mostrar			
	Accidental	Impacto	1.791	1.100	Cumple	Mostrar			
	Mostrar todos los círculos de rotura Observaciones								
	El módulo 1 no cumple a estabilidad global para: Combinación cuasi permanente								
	Calcular	Apli	car	Ayuda 📄 📒	Aceptar	Cancelar			

Figura 4.4.2-2: Diálogo de resumen de resultados del cálculo a estabilidad global.

Para cada situación y combinación se proporciona el Factor de seguridad obtenido (*F.S.*), el Factor de seguridad admisible (*F.S. admisible*) y el resultado de la verificación; en caso de que se cumpla la verificación (F.S. > F.S. admisible) aparecerá la palabra *Cumple* en color verde, y en caso contrario *No cumple* en color rojo.

A la derecha del diálogo encontramos el botón *Mostrar* para cada una de las situaciones; si se aprieta este botón aparecerá en pantalla la gráfica del círculo de rotura con el mapa de isovalores de los coeficientes de seguridad mínimos obtenidos para cada centro del círculo de rotura.

Si además se ha seleccionado la opción *Mostar todos los círculos de rotura* en la gráfica aparecerán en color amarillo los círculos de rotura de cada uno de los centros correspondiente al factor de seguridad mínimo, y en color azul el círculo con FS mínimo.

Figura 4.4.2-3: Diálogo de resumen de resultados del cálculo a estabilidad global.

Finalmente en la parte inferior encontramos la casilla *Observaciones*, en la que se muestran los mensajes correspondientes a los incumplimientos de la verificación a vuelco de todos los módulos del muro. Se puede ver así de forma rápida en que módulos no se verifica la comprobación del vuelco.

4.4.3 Orden Informe

La opción *Informe* del cálculo a estabilidad global permite obtener un documento con el resultado del cálculo realizado.

Para ello se debe introducir el nombre del archivo con el que se quiere guardar el documento del cálculo de estabilidad global y el formato del mismo en la ventana que aparecerá al seleccionar la opción de *Informe* (Figura 4.3.3-1).

EL Estabilidad global	
Guardar listado como	
Nombre del archivo :	ea7-Estabilidad global-Modulo 1
	Documentos Microdost Word 97-2003(*.doc) *.doc
	Examinar
	Aceptar Cancelar

Figura 4.3.3-1: Ventana para la introducción del nombre y formato del documento.

Por defecto el documento se guardará en el mismo directorio en el que está el archivo del muro (directorio de trabajo). No obstante, con el botón *Examinar* se podrá seleccionar una ruta alternativa en la que se desee guardar el documento.

En el listado se mostrará la misma información que la que se muestra con la opción *Consulta* (ver apartado 4.4.2).

4.5 Orden Hundimiento del terreno

Al seleccionar esta opción y activar la orden *Informe* que aparece en el menú principal, se obtiene un informe con los resultados del cálculo de hundimiento del terreno de todos los módulos del muro.

ELU Hundimiento del te	rreno
Guardar listado como	l
Nombre del archivo	: ea7-ELU Hundimiento-Modulo 1
	Documentos Microdost Word 97-2003(*.doc) *.doc
	Examinar
· · · · · · · · · · · · · · · · · · ·	Acentar

Figura 4.5-1: Ventana para la introducción del nombre y formato del documento.

Al ejecutar esta opción se debe introducir el nombre del archivo con el que se quiere guardar el documento del cálculo de hundimiento y el formato del documento en la ventana que aparecerá al seleccionar la opción de *Informe* (Figura 4.5-1).

Por defecto el documento se guardará en el mismo directorio en el que está el archivo del muro (directorio de trabajo). No obstante, con el botón *Examinar* se podrá seleccionar una ruta alternativa en la que se desea guardar el documento.

En el listado se presentan para cada módulo y para cada situación y combinación los siguientes resultados:

- Reacciones en la base de la zapata para cada sección transversal de cálculo:
 - Reacción vertical (N).
 - Reacción horizontal (H).
 - Momento (M) respecto al centro de la zapata.
- Presiones en la base de la zapata:
 - Tensiones en los extremos de la ley de distribución de tensiones $(\sigma_1 \ y \ \sigma_2) \ y$ anchura (b) de la ley de presiones y tipo de la distribución (uniforme o lineal).
 - Resultados de la verificación de hundimiento:
 - Presión máxima.
 - Presión de hundimiento.
 - Factor de seguridad mínimo (en normativa española y Eurocódigos).
 - Factor de seguridad admisible (en normativa española y Eurocódigos).
 - Resultado de la verificación.

4.6 Orden Rotura por flexión

Al seleccionar esta opción y activar la opción *Informe* que aparece en el menú principal, se obtiene un informe con los resultados del cálculo a flexión de todos los módulos del muro.

ELU Rotura por flexión		×
Guardar listado como		
Nombro del erabito s	eero ELL Potura flovión Modulo 1	_
Nombre dei archivo :		
	Documentos Microdost Word 97-2003(*.doc) *.doc	
	Examinar	•
	Acentar	elar

Figura 4.6-1: Ventana para la introducción del nombre y formato del documento.

Al ejecutar esta opción se debe introducir el nombre del archivo con el que se quiere guardar el documento de la memoria y el formato del documento en la ventana que aparecerá al seleccionar la opción de *Informe* (Figura 4.6-1).

Por defecto el documento se guardará en el mismo directorio en el que está el archivo del muro (directorio de trabajo). No obstante, con el botón *Examinar* se podrá seleccionar una ruta alternativa en la que se desea guardar el documento.

En el listado se presentan para el alzado, la zapata y el tacón si lo hubiere, los esfuerzos de cálculo, las armaduras de flexión necesarias y las cuantías mínimas geométricas y mecánicas para cada una de las secciones transversales que se hayan definido, y para cada

una de las situaciones y combinaciones. Se proporciona también una tabla final con la envolvente de armaduras.

Las cuantías que figuran en este listado corresponden únicamente al cálculo de rotura por flexión; es decir, no incluyen la eventual armadura que pueda ser necesaria por fisuración, la cual se muestra en el listado de fisuración.

4.7 Orden Fisuración

Al seleccionar esta opción y activar la opción *Informe* que aparece en el menú principal, se obtiene un informe con los resultados del cálculo a fisuración de todos los módulos del muro.

Al ejecutar esta opción se debe introducir el nombre del archivo con el que se quiere guardar el documento del cálculo a fisuración y el formato del documento en la ventana que aparecerá al seleccionar la opción de *Informe* (Figura 4.7-1).

ELS Fisuración	×
Módulo 1	
Guardar listado como	
Nombre del archivo :	m1-eecc-mks-ELS Fisuración-Modulo 1
	Documentos Microdost Word 97-2003(*.doc) *.doc
	Examinar
	Aceptar Cancelar

Figura 4.7-1: Ventana para la introducción del nombre y formato del documento.

Por defecto el documento se guardará en el mismo directorio en el que está el archivo del muro (directorio de trabajo). No obstante, con el botón *Examinar* se podrá seleccionar la ruta en la que se desea guardar el documento.

En el informe se presentan para el alzado, la zapata y el tacón si lo hubiere, los resultados del cálculo a fisuración, esto es, los esfuerzos de cálculo y la armadura necesaria para que se cumpla la verificación de fisuración. En el caso de la normativa española y la europea, *CivilCAD3000* va aumentando la armadura de forma progresiva hasta que la anchura de fisura calculada sea inferior a la anchura de fisura máxima admisible; en el caso de la normativa americana se procede de igual forma pero la condición a verificar es que la separación de las armaduras sea inferior a la separación máxima admisible. En ambos casos la iteración parte de la armadura obtenida del cálculo a flexión, por lo que la armadura que se proporciona en este informe corresponde a la armadura a disponer en el armado del muro.

4.8 Orden Rotura por cortante

Al seleccionar esta opción y activar la opción *Informe* que aparece en el menú principal, se obtiene un informe con los resultados del cálculo a cortante de todos los módulos del muro.

Al ejecutar esta opción se debe introducir el nombre del archivo con el que se quiere guardar el documento del cálculo a cortante y el formato del documento en la ventana que aparecerá al seleccionar la opción de *Informe* (Figura 4.8-1).

ELU Rotura por cortante	
Guardar listado como	
Nombre del archivo :	m1-eess-mks-ELU Rotura cortante-Modulo 1
	Examinar
	Aceptar Cancelar

Figura 4.8-1: Ventana para la introducción del nombre y formato del documento.

Por defecto el documento se guardará en el mismo directorio en el que está el archivo del muro (directorio de trabajo). No obstante, con el botón *Examinar* se podrá seleccionar la ruta en la que se desea guardar el documento.

El informe presenta los resultados de forma diferenciada para el alzado, la zapata y el tacón si lo hubiese. En cada caso se proporcionan las envolventes de esfuerzos así como los esfuerzos que proporcionan la armadura máxima; a continuación se presentan los resultados del cálculo a cortante con la verificación de resistencia de las bielas de compresión, la armadura de cortante necesaria por cálculo y la mínima fijada por la normativa. Se incluye también una tabla final con la envolvente de armaduras para el alzado, la zapata y el tacón.

4.9 Orden *Deformaciones*

Al seleccionar esta opción y activar la opción *Informe* que aparece en el menú principal, se obtiene un informe con los resultados del cálculo de los movimientos en la coronación de todos los módulos del muro.

Al ejecutar esta opción se debe introducir el nombre del archivo con el que se quiere guardar el documento del cálculo a cortante y el formato del documento en la ventana que aparecerá al seleccionar la opción de *Listado* (Figura 4.9-1).

ELS Deformaciones	
Cuerda listada arras	
Guardar listado como	
Nombre del archivo :	m1-eess-mks-Deformaciones-Modulo 1
	Documentos Microdost Word 97-2003(*.doc) *.doc
	Examinar
· · · · · · · · · · · · · · · · · · ·	
	Aceptar Cancelar

Figura 4.9-1: Ventana para la introducción del nombre y formato del documento.

Por defecto el documento se guardará en el mismo directorio en el que está el archivo del muro (directorio de trabajo). No obstante, con el botón *Examinar* se podrá seleccionar una ruta alternativa en la que se desea guardar el documento.

Los movimientos calculados corresponden a la deformación del alzado del muro, no incluyendo por tanto los movimientos derivados del giro de la cimentación. Así mismo, los movimientos y giros corresponden a las deformaciones elásticas, es decir, considerando inercias no fisuradas. Tampoco incluyen la deformación por efectos reológicos (fluencia).

El informe presenta en primer lugar el movimiento horizontal y el giro de la coronación del muro de cada una de las acciones por separado, obtenidos con el valor característico de las acciones (es decir, no mayorados).

A continuación se muestran los movimientos totales para cada una de las situaciones y combinaciones de cálculo, dándose los valores correspondientes a la hipótesis más desfavorable.

Finalmente se compara el valor máximo del movimiento horizontal con el movimiento máximo admisible.

4.10 Orden Generación de armado

Al seleccionar esta opción y activar la opción *Consulta* que aparece en el menú principal, aparece la ventana de la Figura 4.10-1. En la parte superior derecha de la ventana el usuario debe seleccionar el módulo y el elemento estructural (alzado, zapata o tacón) del cual se quiere consultar el despiece de armado; una vez seleccionado se debe ejecutar el cálculo activando el botón *Calcular* situado en la parte inferior izquierda de la ventana (recuadro rojo de la Figura 4.10-1)

Cuadro de hierros	
Esquema	Apartado Subapartado MODULO 1 ▼ TACÓN ▼
	Nombre nº D sep (m) A B C D E F G H Capas
	Calcular Ayuda Salir

Figura 4.10-1: Ventana de consulta del armado.

Una vez ejecutado el cálculo en el diálogo señalado en la Figura 4.10-2 se mostrará para cada posición de armado del elemento estructural el número que identifica la posición (Nombre), el número de barras (n°), la identificación del diámetro de la barra (D), la separación entre barras (*sep*) y las dimensiones de los trozos de la misma (A, B, C, etc.); en la Figura superior de la ventana se muestra la forma de la barra seleccionada.

c	uadro de hierros					-	-								×
	Esquema	MOE	Apartado DULO 1	•	Suba ZAPATA	apartado	•	VM							
	A B C		Nombre	nº	D	sep (m)	Α	В	С	D	E	F	G	н	Capas
i I		1	1	14	#5	0.152	80	995	80						1
		2	2	39	#5	0.152	80	995	80						1
		3	3	66	#5	0.152	75	791	75						1
		4	4	7	#3	0.356	80	994	80						1
		5	5	33	#5	0.152	80	995	80						1
		6	6	98	#6	0.102	75	791	75						1
		7	7	9	#5	0.152	10	798	10						1
		8	8	9	#5	0.152	10	798	10						1
		9	9	9	#5	0.152	10	998	10						1
		10	10	9	#5	0.152	10	998	10						1
			Calcular										Ayu	da	Salir

Figura 4.10-2: Diálogo de definición de cada posición del armado.

4.11 Orden Mediciones

5 SALIDA

Bajo el epígrafe *Salida* se engloban las opciones de salida de resultados, que se organizan en las tres opciones siguientes (ver Figura 5-1):

- Memoria de cálculo.
- Planos.
- Mediciones.

E Sin Nombre	
 → Muro → Proyecto → Entrada → Análisis → Salida → Memoria de cálculo → Planos → Mediciones 	
Verificación Result	
Normas españolas EHE08 / IAP11	
Unidades: M.K.S.	X: 0.000 Y: 0.000
👔 🕑 🛃 🖝 🍦 🛛 Calcular todo	Fijar / no fijar croquis

Figura 5-1: Opciones de salida de resultados.

En los siguientes apartados se explican los resultados que se pueden obtener con cada una de las órdenes definidas.

5.1 Orden Memoria de cálculo

Al seleccionar la opción *Memoria de cálculo*, aparece en pantalla la ventana de la Figura 5.1-1 que permite configurar el contenido de la memoria de cálculo.

Apartado	Obtener	Tadaa ka médalaa	
Resumen de verificaciones			Módulo
Definición del muro	V		
Esfuerzos y reacciones		Querter information	
Estado límite de deslizamiento		Guardar Informe Como	
Estado límite de vuelco		Nombre del archivo :	
Estado límite de estabilidad global			
Estado límite de hundimiento		-Informe memoria-Modulo 1	
Estado límite de rotura por flexión			
Estado límite de fisuración		Documentos Microdost Word 9	77-2003(*.doc) *.doc
Estado límite de rotura por cortante			
Estado límite de deformaciones			Examinar
Planos de geometría			
Planos de armadura			
Todos			Aceptar Cancelar

Figura 5.1-1: Ventana correspondiente a la memoria de cálculo.

La memoria se estructura en los siguientes apartados:

- *Resumen de verificaciones:* Relación de las verificaciones para cada uno de las comprobaciones (hundimiento, vuelco, deslizamiento, etc.) en la que se indica si se cumple (verifica) o no la comprobación.
- *Definición del muro:* Corresponde a la definición del muro, tanto de la geometría y del terreno como de las cargas. En este apartado se escriben todos los datos correspondientes a la Entrada de Datos.
- *Esfuerzos y reacciones:* Se incluyen en este apartado los esfuerzos característicos (sin mayorar) en el alzado del muro para cada una de las acciones, así como las cargas actuando sobre el alzado y sobre la zapata, y la resultante de esfuerzos en la base de la zapata.
- *Estado límite de deslizamiento:* Presenta los resultados del cálculo a deslizamiento para la hipótesis más desfavorable de cada combinación.
- *Estado límite de vuelco:* Presenta los resultados del cálculo a vuelco para la hipótesis más desfavorable de cada combinación.
- *Estado límite de estabilidad global:* Presenta los resultados del cálculo de la estabilidad global para la hipótesis más desfavorable de cada combinación.
- *Estado límite de hundimiento:* Presenta los resultados del cálculo a hundimiento para la hipótesis más desfavorable de cada combinación.
- *Estado límite de rotura por flexión:* Presenta los esfuerzos de diseño y las armaduras resultantes para las distintas secciones de cálculo. La armadura de este informe no incluye la armadura necesaria para la fisuración.
- *Estado límite de fisuración:* Presenta los resultados del cálculo a fisuración, incluyendo los esfuerzos de cálculo, las aberturas de fisura y la armadura resultante del cálculo indicando diámetro y separación de las barras. La armadura obtenida en este apartado ya incluye la armadura de rotura por flexión.
- *Estado límite de rotura por cortante:* Presenta los esfuerzos de diseño y las armaduras resultantes para las distintas secciones de cálculo, así como las verificaciones correspondientes en función de la normativa.

- *Estado límite de deformaciones:* Presenta los movimientos y giros máximos en coronación de muro y las verificaciones correspondientes respecto al movimiento máximo admisible.
- *Planos de geometría:* Al seleccionar esta opción se incluyen en la memoria los planos de geometría del muro.
- *Planos de armadura:* Al seleccionar esta opción se incluyen en la memoria los planos de armaduras del muro.

Con el diálogo que se señala en la Figura 5.1-2 se deben seleccionar las opciones que se desea que se incluyan en la memoria. Si se selecciona la opción *Todos* se marcaran automáticamente todas las opciones.

Memoria de cálculo		
Apartado Resumen de verificaciones Definición del muro Esfuerzos y reacciones Estado límite de deslizamiento Estado límite de vuelco Estado límite de estabilidad global Estado límite de hundimiento Estado límite de rotura por flexión Estado límite de rotura por cortante Estado límite de deformaciones Planos de geometría Planos de armadura Todos	Obtener	 Todos los módulos Módulo Guardar informe como Nombre del archivo : -Informe memoria-Modulo 1 Documentos Microdost Word 97-2003(*.doc) *.doc Examinar Aceptar Cancelar

Figura 5.1-2: Diálogo para seleccionar las opciones que se desean listar.

Además existe la opción de obtener la memoria de todos los módulos que componen el muro o solo el de un módulo. Para ello debe seleccionarse la opción de un módulo y seleccionar a continuación el módulo que se desea analizar (ver Figura 5.1-3).

lemoria de cálculo			
Apartado	Obtener	-	
Resumen de verificaciones		I odos los modulos	Módulo
Definición del muro	V		1 📼
Esfuerzos y reacciones		Cuesday information	1
Estado límite de deslizamiento		Guardar Informe como	23
Estado límite de vuelco		Nombre del archivo :	J. J
Estado límite de estabilidad global		To forme managin Mark data	
Estado límite de hundimiento		-Informe memoria-Modulo I	
Estado límite de rotura por flexión			
Estado límite de fisuración		Documentos Microdost Word	d 97-2003(*.doc)[*.doc] ◆
Estado límite de rotura por cortante			
Estado límite de deformaciones			Examinar
Planos de geometría			
Planos de armadura			
Todos			Aceptar Cancelar

Figura 5.1-3: Selección del módulo del cual se quiere obtener la memoria de cálculo.

Finalmente se debe introducir el nombre del archivo con el que se quiere guardar el documento de la memoria y el formato del documento. Para ello debe apretarse el botón señalado en la Figura 5.1-4 para desplegar las distintas opciones de formato disponibles.

1	N	lemoria de cálculo		
		Apartado Resumen de verificaciones	Obtener	Todos los módulos Mádulo
		Definición del muro		1
		Esfuerzos y reacciones		
		Estado límite de deslizamiento		Guardar informe como
		Estado límite de vuelco		Nombre del archivo :
1		Estado límite de estabilidad global		
		Estado límite de hundimiento		-Informe memoria-Modulo 1
		Estado límite de rotura por flexión		Decumpentes Microdest Word 07 2002/* dec\1* decl
		Estado límite de fisuración		Documentos Microadst Word 97-2005(*.doc)[*.doc]
		Estado límite de rotura por cortante		Archivos ANSI (*.txt) *.txt
1		Estado límite de deformaciones		Archivos TX Control (*.txt) *.txt
1		Planos de geometría		Archivos HTML (*.) *.
		Planos de armadura		Archivos RTF (*.rtf) *.rtf
1		Todos		Archivos Unicode (*.txt) *.txt
				Archivos TX Control Unicode (*, txt) *, txt
F	iiar	Loo fijar croquis		Documentos Microdost Word 97-2003(*.doc) *.doc
	ŋa.	7 no njar crodalo		Archivos XML(*.xml) *.xml
				Archivos CSS(*.css) *.css Archivos Adada PDE/* pdfl
				Documentos Microsoft Word (*.docx) [*.docx]
				Archivos Adode PDF/A(*.pdf) *.pdf

Figura 5.1-4: Selección del formato del documento de la memoria.

Por defecto el documento de la memoria se guardará en el mismo directorio en el que está el archivo del muro (directorio de trabajo). No obstante, con el botón *Examinar* se podrá seleccionar una ruta alternativa en la que se desea guardar el documento.

5.2 Orden Planos

La orden Planos permite generar los planos de geometría y los planos de armadura del muro. Al activar esta orden se despliega en el menú principal dos opciones, que a su vez permiten acceder a las órdenes de generación de los distintos planos:

Figura 5.2-1: Opciones de la orden Planos en el menú principal.

5.2.1 Orden Planos de definición geométrica

Al seleccionar la orden *Planos de definición geométrica* se despliegan en el menú principal las distintas opciones de figuras que se pueden generar para la composición del plano (ver Figura 5.2-1). A continuación se describen las figuras que pueden obtenerse con cada una de las opciones.

- *Generación automática*: Esta opción permite obtener de forma automática los planos de geometría del muro; se incluyen por tanto todas las figuras necesarias para la definición del muro. *CivilCAD3000* selecciona las escalas adecuadas para cada una de las figuras para una correcta configuración del plano. Una vez generados los planos automáticamente, el usuario puede modificarlos, añadiendo o eliminando figuras o bien cambiando las características que definen las figuras (para ello hay que pinchar la figura a cambiar con el botón derecho del ratón y elegir la orden deseada del menú emergente).
- *Planta general:* Esta orden permite generar la figura de planta del muro incluyendo todos los módulos.

- *Planta genérica:* Esta orden genera la planta de un módulo genérico del muro y la *acota* con letras a modo de parámetros, los cuales quedan definidos en una tabla que se genera conjuntamente con la figura.
- *Planta de un módulo*: Genera la figura de la planta del módulo seleccionado. Al seleccionar esta opción aparece en pantalla una ventana en la que debe seleccionarse el módulo y la escala del dibujo.
- *Alzado general*: Esta opción genera el alzado frontal desplegado del muro; se incluyen por tanto todos los módulos que forman el muro.
- *Alzado genérico*: Esta orden genera el alzado frontal de un módulo genérico del muro y lo *acota* con letras a modo de parámetros, los cuales quedan definidos en una tabla que se genera conjuntamente con la figura.
- *Alzado de un módulo*: Genera la figura del alzado del módulo seleccionado. Al seleccionar esta opción aparece en pantalla una ventana en la que debe seleccionarse el módulo y la escala del dibujo.
- *Sección genérica*: Esta orden genera la sección transversal de un módulo genérico del muro y la *acota* con letras a modo de parámetros, los cuales quedan definidos en una tabla que se genera conjuntamente con la figura
- *Sección de un módulo*: Genera la figura de la sección transversal del módulo seleccionado; la sección representada corresponde a la sección media. Al seleccionar esta opción aparece en pantalla una ventana en la que debe seleccionarse el módulo y la escala del dibujo.
- *Visualización 3D*: Con esta orden se obtiene una representación 3D del conjunto de todos los módulos en perspectiva axonométrica.
- *Cuadro de materiales*: Con esta opción se genera del cuadro de definición de los materiales utilizados en cada elemento estructural (zapata y alzado), tanto en lo que se refiere al hormigón como al acero.

Al seleccionar cualquiera de las opciones anteriores *CivilCAD3000* pregunta la escala con la cual se desea generar la figura y el punto de inserción de la ventana del plano en la que debe insertarse la figura.

5.2.2 Orden Planos de armadura

Al seleccionar la orden *Planos de armadura* se despliegan en el menú principal las distintas opciones de figuras que se pueden generar para la composición del plano (ver Figura 5.2-1). A continuación se describen las figuras que pueden obtenerse con cada una de las opciones.

- *Generación automática*: Esta opción permite obtener de forma automática los planos de armadura del muro; incluye por tanto todas las figuras necesarias para la definición de las armaduras del muro. *CivilCAD3000* selecciona las escalas adecuadas para cada una de las figuras para la adecuada configuración del plano. Una vez generados los planos automáticamente, el usuario puede modificarlos, añadiendo o eliminando figuras o bien cambiando las características que definen las figuras (para ello hay que pinchar la figura a modificar con el botón derecho del ratón y elegir la orden deseada del menú emergente).
- *Planta armadura inferior zapata:* Esta orden permite generar la figura de la planta de las armaduras de la cara inferior de la zapata del módulo seleccionado. Al seleccionar

esta opción aparece en pantalla la ventana de la Figura 5.2.2-1 donde debe introducirse la escala de la figura y seleccionar el módulo del cual se quiere obtener la armadura.

Figura del módulo	×
Módulo 1	
Escala 1: 50	
	Aceptar Cancelar

Figura 5.2.2-1: Ventana para la entrada de la escala y la selección del módulo

- *Planta armadura superior zapata*: Esta orden permite generar la figura de la planta de las armaduras de la cara superior de la zapata del módulo seleccionado.
- *Planta armadura de cortante y lateral zapata*: Esta orden permite generar la figura de la planta de las armaduras de cortante y la armadura de piel de las caras laterales de la zapata del módulo seleccionado.
- *Sección armadura zapata*: Esta opción genera la figura de armado de la sección transversal de la zapata del módulo seleccionado; la sección representada se corresponde con la sección central del módulo.
- *Alzado frontal armadura trasdós*: Esta orden genera la figura del armado del trasdós del alzado frontal del módulo seleccionado.
- *Alzado frontal armadura exterior*: Esta orden genera la figura del armado del trasdós del alzado frontal del módulo seleccionado.
- *Sección armadura alzado*: Esta opción genera la figura de armado de la sección transversal del alzado del módulo seleccionado; la sección representada se corresponde con la sección central del módulo.
- *Armadura lateral alzado*: Con esta opción se generan las figuras de los dos alzados laterales del alzado del módulo seleccionado.
- *Armadura tacón:* Al seleccionar esta opción se genera la figura de armado de la sección transversal del tacón.
- *Lista de hierros*: Al seleccionar esta opción *CivilCAD3000* dibujará la lista de hierros del muro. Para ello el usuario debe seleccionar el punto de inserción en el dibujo; en este momento aparecerá la ventana de la Figura 5.2.2-2 que permite configurar las posiciones que se desea que salgan en la Lista de hierros, fijando la posición inicial y final y la dimensión de la altura de cada una de las posiciones de armado en la lista.

Lista o	de hierros			_	X		
Seleccione posiciones inicial y final con las que generar la lista de hierros :							
			_				
		TACÓN		ALZADO	Ī		
			-	24	•		
Altura del dibujo de cada una de las posiciones :							
	Apartado	Subapartado	Posición	Altura (mm)			
	MODULO 1	ZAPATA	1	10.000			
			2	10.000			
			3	10.000			
			4	10.000			
			5	10.000			
			6	10.000	-		
Generar retilla							
			`	Jenieral rejila			
Ayuda Aplicar Aceptar Cancelar							

Figura 5.2.2-2: Ventana de configuración de la Lista de hierros.

- *Cuadro de recubrimientos*: Con esta opción se genera el cuadro de recubrimientos en que se especifican los recubrimientos geométricos para la zapata y el alzado.

Al seleccionar cualquiera de las opciones anteriores *CivilCAD3000* pregunta la escala con la cual se desea generar la figura y el punto de inserción de la ventana del plano en la que debe insertarse la figura.

5.3 Orden Mediciones

Al seleccionar esta opción se despliegan en el menú principal las órdenes *Listado de mediciones* y *Listado de mediciones* y *precios* (ver Figura 5.3-1). La primera de ellas permite obtener un listado de las mediciones del muro en base a las actividades de obra definidas en la Base de Precios (ver apartado 2.1.6). La segunda genera un listado con las mediciones y la valoración económica en base a los precios de la Base de Precios.

			x		
Muro	ŕ				
Proyecto					
🛓 - Entrada					
Análisis					
🚊 Salida					
Memoria de cálculo					
	Planos				
⊡- <mark>Mediciones</mark>	🖨 - Mediciones				
Listado de mediciones					
Listado de mediciones y p	Listado de mediciones y precios				
,• 💷	•				
Verificación	Resultado				
Verificación	Resultado				
Verificación	Resultado				
Verificación	Resultado				
Verificación	Resultado				
Verificación	Resultado				
Verificación Normas españolas EHE08 / IAP11 Unidades: M.K.S.	Resultado	Y: 0.000	4		

Figura 5.3-1: Opciones del menú principal para la obtención de las mediciones.

5.3.1 Orden Listado de mediciones

Al seleccionar esta opción aparece en pantalla la ventana de la Figura 5.3.1-1.

Mediciones	×
Módulo 1	
Guardar listado como	
Nombre del archivo :	pp1-Mediciones-Modulo1
	Documentos Microdost Word 97-2003(*.doc) *.doc
	Examinar
	Aceptar Cancelar

Figura 5.3.1-1: Selección del formato del documento de la memoria.

En este diálogo se debe seleccionar el módulo del cual se quieren obtener las mediciones e introducir el nombre del documento que se generará con las mediciones (cadena alfanumérica) y finalmente seleccionar el formato del documento. Para ello debe apretarse el botón señalado en la Figura 5.3.1-2 para desplegar las distintas opciones de formato disponibles.

Figura 5.3.1-2: Selección del formato del documento de la memoria.

Por defecto el documento de las mediciones se guardará en el mismo directorio en el que está el archivo del muro (directorio de trabajo). No obstante, con el botón *Examinar* se podrá seleccionar la ruta en la que se desea guardar el documento.

5.3.2 Orden Listado de mediciones y precios

En esta opción se opera de igual forma que en la obtención del Listado de mediciones (ver apartado 5.3.1, pero el documento que se genera contiene además de las mediciones la valoración económica de cada unidad y la valoración total del módulo del muro seleccionado. La valoración se realiza en base a los precios de la Base de Precios seleccionada en la opción *Proyecto/Configuración* del menú principal.

6 REFERENCIAS

[1] JOSÉ MARÍA RODRIGUEZ ORTIZ. "*Curso aplicado de cimentaciones*". Ed. Colegio Oficial de Arquitectos de Madrid, 1986. 3ª Edición.

[2] "*Guía de cimentaciones en obras de carreteras*". Ed. Centro de Publicaciones. Secretaría General Técnica. Ministerio de Fomento, 2004. 2ª Edición.

[3] "Instrucción sobre las acciones a considerar en el proyecto de puentes de carretera".
Ed. Centro de Publicaciones. Secretaría General Técnica. Ministerio de Fomento, 2011. 1ª Edición.

[4] "*Norma de construcción sismorresistente: Puentes (NCSP-07)*". Ed. Centro de Publicaciones. Secretaría General Técnica. Ministerio de Fomento, 2007. 1ª Edición.

[5] *"EHE-08. Instrucción de Hormigón"*. Ed. Centro de Publicaciones. Secretaría General Técnica. Ministerio de Fomento, 2008. 1ª Edición revisada.

[7] "Eurocódigo 0: EN-1990:2001. Bases de diseño estructural".

[8] "Eurocódigo 0: EN-1990:2003/A2. Bases de diseño estructural. Anejo 2. Aplicación en puentes".

[9] "Eurocódigo 1: EN-1991:2003. Acciones en estructuras".

[10] "Eurocódigo 2: EN-1992:2005. Diseño de estructuras de hormigón".

[11] "Eurocódigo 7: EN-1997:2004. Diseño geotécnico".

[12] "Eurocódigo 8. Parte 1: EN-1998-1:2004. Diseño de estructuras resistentes al sismo. Normas generales, acciones sísmicas y normas para edificación".

[13] "Eurocódigo 8. Parte 2: EN-1998-2:2005. Diseño de estructuras resistentes al sismo. Puentes".

[14] "Eurocódigo 8. Parte 5: EN-1998-5:2004. Diseño de estructuras resistentes al sismo. Cimentaciones, estructuras de retención y aspectos geotécnicos".

[15] "AASHTO LRFD Design Specifications". Ed. American Association of State Highway and Transportation Officials, 2010.1ª Edición

[16] "*Código Técnico de la Edificación. Documento Básico SE Seguridad Estructural*". Real Decreto 314/2006, de 17 de marzo (BOE núm. 74, de 28 de marzo).